
Automatic Time-Table –Implementation

using Genetic Algorithm

Asif Ansari#1, Ajit Parab#2

#1 Lecturer, Computer Technology, BGIT
#1
ansariasif23@gmail.com

#2 HOD, Computer Technology, BGIT

Abstract: A college timetable is a temporal arrangement of

a set of classes and classrooms in which all given

constraints are satisfied. Timetabling has long been known

to belong to the class of problems called NP hard. This

project introduces a practical timetabling algorithm

capable of taking care of both Hard and soft constraints

effectively, used in an automated timetabling system. The

Genetic Algorithm is main component of project which

produces the XML based weekly timetable sheet as the

output. The project takes various inputs from the user such

as Teacher List, Course List, Semester List, Room List, Day

List and Timeslot as well as various rules, facts and

constraints using Genetic Algorithm, which are stored in

XML based knowledge base. This knowledge base serves

as input to our Timetable Generator Algorithm. Further

benefits of choosing these frameworks are explained in

later part of report with practically acceptable results.

Keywords: Genetic Algorithm, XML, hard constraints, soft

constraints.

I. INTRODUCTION

Even though most college administrative work has

been computerized, the lecture timetable scheduling is

still mostly done manually due to its inherent

difficulties. The manual lecture-timetable scheduling

demands considerable time and efforts. The lecture-

timetable scheduling is a constraint satisfaction

problem in which we find a solution that satisfies the

given set of constraints. The college lecture-

timetabling problem asks us to find some time slots

and classrooms which satisfy the constraints imposed

on offered courses, lecturers, classrooms and so on.

Since the problem is a combinatorial optimization

problem belonging to NP-hard class [1], the

computation time for timetabling tends to grow

exponentially as the number of variables increase.

There have been a number of approaches made in the

past decades to the problem of constructing timetables

for colleges and schools. Timetabling problems may

be solved by different methods inherited from

operations research such as graph coloring and

mathematical programming, from local search

procedures such as tabu search and simulated

annealing, or from backtracking-based constraint

satisfaction manipulation In our project, timetabling

problem is formulated as a constraint satisfaction

problem and we proposed a practical timetabling

algorithm which is capable of taking care of both hard

and soft constraints.

II. TIMETABLING

A timetable construction is an NP-complete

scheduling problem. It is not a standard job-shop

problem because of the additional classroom

allocation. It is large and highly constrained, but above

all the problem differs greatly for different colleges

and educational institutions. It is difficult to write a

universal program, suitable for all imaginable

timetabling problems. Although manual construction

of timetables is time-consuming, it is still widespread,

because of the lack of appropriate computer programs.

A timetabling algorithm can use different strategies to

get a solution without violation of hard constraints.

Violations can either be avoided from the outset or

penalized to lead the algorithm towards better

solutions and introduce repair mechanisms.

The considered college is a polytechnic college which

has the following characteristics on its course

administration.

1. The classes for students are scheduled in the

weekday’s that can be specified as 5 to 6 working

days

2. The types of lectures are:

Journal of Computing Technologies (2278 – 3814) / # 22 / Volume 6 Issue 4

 © 2017 JCT. All Rights Reserved 22

• Theory lecture

• Tutorial

3. The class size of theory lectures is from 40 to 60.

4. A minimum timeslot is a 1 Hour interval.

5. For theory classes takes 1 Timeslot and tutorial

takes 1 timeslot.

III. PROPOSED SYSTEM

The System proposes an optimized technique to

automate time table generation system. Time table

generation system involves various challenging

constraints of resources including faculties, rooms,

time slots etc. The proposed technique filters out the

best of active rules and Genetic algorithm to generate

the optimized solution. Genetic Algorithm and Active

Rules together form a complete sphere for developing

a system, which needs to satisfy various constraints.

Active Rules provide “event-condition-action” model

for the implementation of any rule based system.

Planning timetable is one of the most complex and

error prone applications. There are still serious

problems like generation of high cost time table are

occurring while scheduling and these problems are

repeating frequently. Therefore there is a great

requirement for an application distributing the course

evenly and without collisions. The aim is here to

develop a simple, easily understandable, efficient and

portable application which could automatically

generate good quality time table within a second.

Active rules are described for the knowledge of

intelligent agents (i.e. Constraints), GAs are described

and their use in optimizing rule based agent is

proposed, methods are apply to the problem of

optimizing some results of this application are

presented and finally, some conclusion and possible

direction for future research are presented. The

structure of time table generator consist Input Data

Module, relation between the input data module, time

slots module, applying active rules and GA module

then extract the reports.

Input Format

Each instance is in a single file, containing a file

header and four sections: courses, rooms, curricula,

and constraints. The header provides all scalar values

and each section provides the arrays for that specific

aspect of the problem. The exact format is shown by

the following example

Figure 1: Input Format

Constraints

Constraints can be divided in to two parts:

1. Hard constraints

2. Soft constraints

Hard constraints

Lectures: All lectures of a course must be scheduled,

and they must be assigned to distinct periods.

Room Occupancy: Two lectures cannot take place in

the same room at the same time.

Conflicts: Lectures of courses in the same curriculum

or taught by the same teacher must be all scheduled in

different periods.

Availabilities: If the teacher of the course is not

available to teach that course at a given period, then no

lectures of the course can be scheduled at that period.

Soft constraints

Room Capacity: For each lecture, the number of

students that attend the course must be less or equal

than the number of seats of all the rooms that host its

lectures.

Minimum Working Days: The lectures of each course

must be spread into a minimum number of days.

Room Stability: All lectures of a course should be

given in the same room.

System Structure

Figure 2 below shows The System Structure of the

timetable Generator.

Journal of Computing Technologies (2278 – 3814) / # 23 / Volume 6 Issue 4

 © 2017 JCT. All Rights Reserved 23

Figure 2: System Structure

Active Rules are based upon an Event-Condition-

Action architecture. The meaning of an ECA rule is:

“when an event occurs check the condition and if it is

true execute the action”. There is an event language for

defining events and for specifying composite events

from a set of primitive ones. The condition part of an

ECA rule formulates in which state the database has to

be, in order for the action to be executed. The action

part of an ECA rule usually starts a new transaction

which when executed may trigger new ECA rules. The

system will then select the rule with the highest

priority to fire, or will arbitrarily select a rule to fire if

there is more than one with the same priority.

IV. GENETIC ALGORITHM

Genetic algorithms are methods of solving problems

based upon an abstraction of the process of Natural

Selection. They attempt to mimic nature by evolving

solutions to problems rather than designing them.

Genetic algorithms work by analogy with Natural

Selection as follows. First, a population pool of

chromosomes is maintained. The chromosomes are

strings of symbols or numbers. There is good

precedence for this since humans are defined in DNA

using a four-symbol alphabet. The chromosomes are

also called the genotype (the coding of the solution),

as opposed to the phenotype (the solution itself). In the

Genetic algorithm, a pool of chromosomes is

maintained, which are strings. These chromosomes

must be evaluated for fitness. Poor solutions are

purged and small changes are made to existing

solutions and then allow "natural selection" to take its

course, evolving the gene pool so that steadily better

solutions are discovered. The basic outline of a

Genetic Algorithm is as follows: Initialize pool

randomly

For each generation

{

Select good solutions to breed new

population

Create new solutions from parents

Evaluate new solutions for fitness

Replace old population with new ones

}

The randomly assigned initial pool is presumably

pretty poor. However, successive generations

improve, for a number of reasons:

1. Selection:

The process is realized in the system using Movable

Lecture Selection Filter. This module decide Decides

on keeping or discarding a selection (which is a

Planning Entity, a planning Value, a Move or a

Selector). If works on Boolean value. If the selection

is accepted it returns TRUE and if the selections is

rejected it returns FALSE. This will never return

NULL value. Proposed System.

2. . Mutation.

Mutation is a divergence operation. It is intended to

occasionally break one or more members of a

population out of a local minimum/maximum space

and potentially discover a better minimum/maximum

space. The mutation of the chromosome is realized by

the call various functions such as Lecturer Difficulty

Weight, Period Strength, and Room Strength. It can be

realized in the following possibilities. The first two

cases are random changes of the chromosome:

Exchange of randomly chosen elements of Room and

Time the two randomly chosen lectures are exchanged

in time periods, and the another two are exchanged in

their rooms. The randomly chosen lecture is

substituted by the randomly chosen time period, and to

another lecture is randomly chosen room.

3. Crossover:

The process is realized in the system by using

courseconflict.java module if conflict arises in any of

the resources, then the resources are interchanged so

as to avoid the conflict. That is either of the resources

is moved to the right or to the left to avoid the conflict.

The new descendant is started by crossing of two

parents for every case. The descendant receives

Journal of Computing Technologies (2278 – 3814) / # 24 / Volume 6 Issue 4

 © 2017 JCT. All Rights Reserved 24

random part of field Room and Time for the first

parent, the rest it receives from the second parent. The

cross point is various for the two fields.

Algorithm

// Initialise generation 0:

k := 0;

Pk := a population of n randomly-generated

individuals;

// Evaluate Pk:

Compute fitness(i) for each i∈ Pk;

do

{ // Create generation k + 1:

// 1. Copy:

Select (1 −) × n members of Pk and insert into Pk+1;

// 2. Crossover:

Select × n members of Pk; pair them up; produce

offspring; insert the offspring into Pk+1;

// 3. Mutate:

Select μ × n members of Pk+1; invert a randomly-

selected bit in each;

// Evaluate Pk+1:

Compute fitness(i) for each i∈ Pk;

// Increment:

k := k + 1;

}

while fitness of fittest individual in Pk is not high

enough; return the fittest individual from Pk;

V. CONCLUSION

The GA in timetabling framework has been shown to

be successful on several real problems. It has been

shown that the genetic algorithm perform better in

finding areas of interest even in a complex, real-world

scene. One could argue that the genetic algorithm can

find a local optimum and then stop. This is always a

danger with a genetic algorithm, but again it depends

on the search space. In this time table generation

approach, there are many good solutions and the

genetic algorithm will find one of them. In extreme

cases where there is only one good solution the genetic

algorithm may fail, but again it can be restarted by the

Active Rules with many chances to find a better

solution. One could also argue that this architecture is

not powerful enough since it does not work based on

an event/action language. However there is nothing to

prevent this architecture from being a subset of a rich

and powerful event/action language. In such a case it

can be used to pick the rule to be fired when there are

no other criteria available for rule selection. In other

cases it may be better to let the genetic algorithm pick

the rule to be fired, instead of having many conditions

which will complicate the active rule set and

consequently increase design, test and maintenance

times. The benefits of this approach are simplified

design and reduced development and maintenance

times of rule-based agents in the face of dynamically

evolving environments.

REFERENCES

[1] Michael R. Garey and David S. Johnson. Computers and

intractability: a guide to the theory of np-completenesspage no

13-14. 1979.

[2] S. Petrovic S. and E. Burke. University timetabling. In

Handbook of scheduling: Algorithms, models, and

performance analysis, pages 1-23. CRC Press, Boca Raton,

FL, 2004.

[3] H. L. Fang. Genetic algorithms in timetabling scheduling.

Ph.D. thesis, University of Edinburgh, Edinburgh, UK, 1994.

[4] S. A. MirHassani. A computational approach to enhancing

course timetabling with integer programming. Applied

Mathematics and Computation, 175: 814-822, 2006.

[5] M. L. Pinedo. Planning and scheduling in manufacturing and

services. In Springer Series in operations research, pages 3-8.

Springer, New York, 2005.

[6] J. Clausen. Branch and bound algorithms- principles and

examples, 1999. http://citeseerx.ist.psu.edu/.

[7] M. Friedrich, I. Hofsäß and S. Wekeck. Timetable-Based

Transit Assignment Using Branch & Bound, 2009.

http://cgi.ptv.de/download/traffic/library/2001%20TRB%20

Timetable%20Transit%20Assignment.pdf.

[8] T. E. Morton and D. W. Pentico. Heuristic scheduling systems.

Wiley Series in Engineering & Technology Management,

New York, 1993.

[9] R. Montemanni. Timetabling: Guided Simulated Annealing +

Local Searches, 2003.

http://www.idsia.ch/Files/ttcomp2002/montemanni.pdf.

[10] D. Abramson, M. Krishnamoorthy and H. Dang. Simulated

Annealing Cooling Schedules for the School Timetabling

Problem, 1997. http://citeseerx.ist.psu.edu

/viewdoc/summary?doi=10.1.1.35.994.

[11] F. Glover and M. Laguna. Tabu Search,

2009.http://www.dei.unipd.it/~fisch/ricop/tabu_search_glove

r_laguna.pdf.

[12] A. Hertz, E. Taillard E. and D. A. de Werra. Tutorial OnTabu

Search, 2009. http://www.cs.colostate.edu/~whitley/

CS640/hertz92tutorial.pdf

[13] A. Schaerf. Tabu Search Techniques for Large High-School

Timetabling Problems, 1996. http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.20.9007.

[14] W. Legierski, Constraint-Based Reasoning for Timetabling.

AI-METH 2002-Artificial Intelligence Methods (November

13-15, 2002), 2002. http://www.aiforum. org/data/22-cons.pdf

Journal of Computing Technologies (2278 – 3814) / # 25 / Volume 6 Issue 4

 © 2017 JCT. All Rights Reserved 25

http://citeseerx.ist.psu.edu/
http://cgi.ptv.de/download/traffic/library/2001%20TRB
http://citeseerx.ist.psu.edu/
http://www.cs.colostate.edu/~whitley/
http://citeseerx.ist.psu.edu/
http://www.aiforum/

