

Volume-14, Issue-04, April 2025 JOURNAL OF COMPUTING TECHNOLOGIES (JCT) International Journal

Page Number: 01-06

Design and Implementation of an Enhanced Viterbi Decoder Using VHDL With Improved Performance For SDN

Polarati Gayatri ¹, Aditya Mishra ²

1,2 VLSI M.Tech Scholar, Assistant Professor

1,2 Department of Electronics and Communication Engineering

1,2 Vidhyapeeth Institute of Science & Technology Bhopal, RGPV, (M.P.), INDIA

Gmail: gayatripolarati123@gmail.com ¹ adivgi023@gmail.com ²

Abstract—this article presents the design and implementation of an enhanced Viterbi decoder using VHDL, optimized for improved performance in Software Defined Networking (SDN). With the growing demand for secure communication across devices, channel coding also known as forward error correction, block coding, and convolutional coding is applied between transmitter and receiver to ensure data integrity. The encoded message is decoded using a Viterbi decoder. This work reviews various Viterbi decoder designs from the last decade in the literature survey and explains its components in the technical background. The proposed decoder is designed with three main units: Branch Metric Unit (BMU), Path Metric Unit (PMU), and Survivor Memory Unit (SMU). Simulation is performed using Xilinx 14.1, and synthesis is carried out with I-Sim. Results indicate successful synthesis without errors, achieving low area in terms of slices, flip-flops, and LUTs, along with minimal delay. Compared to previous work, the proposed design demonstrates improved performance in LUTs, number of slices, gates, and delay, achieving better efficiency in area-speed trade-offs.

Keywords—Branch Metric Unit, Path Metric Unit, Survivor Memory unit, look up tables (LUTs), etc.

I. INTRODUCTION

The receiver may identify a limited number of faults anywhere in the message and typically rectify them without retransmission due to redundancy. At the expense of a fixed, greater forward channel capacity, FEC allows the repair mistakes without retransmission. One-way communication multicast broadcasts to numerous recipients need FEC since retransmissions are expensive or impractical. An Uranus-orbiting satellite's re-transmission due to decoding problems may take 5 hours. FEC information is added to mass storage (magnetic, optical, and solid state/flash-based) devices to recover corrupted data, is widely used in modems, on systems with ECC memory, and in broadcast situations where the receiver cannot request retransmission or would incur significant latency. A receiver may demodulate a digital carrier or process a digital bit stream using FEC. The receiver's first analog-to-digital conversion includes FEC. Viterbi decoders use soft-decision algorithms to demodulate noise-corrupted analog signals into digital data. Bit-error rate (BER) signals from several FEC coders may be utilized to fine-tune analog reception

devices. Various forward error correcting codes are suited for various scenarios since the ECC design limits the maximum fractions of mistakes or missing bits that may be fixed. Stronger codes need more bandwidth to transmit redundancy, lowering the effective bit-rate and enhancing the received signal-to-noise ratio.

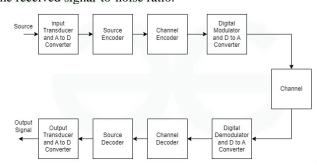


Fig 1. Basic model of a digital transmission system using FEC techniques

The channel encoder adds controlled redundancy to the binary information sequence to help the receiver detect and fix mistakes. In particular, the channel encoder converts k

information symbols into a unique n-symbol code word. Code rate = k/n. The inverse of the code rate, n/k, measures encoding redundancy.

The reception decoder evaluates the encoder's rules to discover and repair transmission problems. This adjustment boosts coding. Reed Solomon codes, utilized in wireless, satellite, magnetic, and optical recording, are block codes' most successful use. FEC was initially deployed in underwater transmission systems using RS(255,239). RS codes' non-binary architecture (RS encoder/decoder processes m-bit symbols at each clock top) make them ideal for large data rates. Simple RS encoder/decoder implementation is also possible. ITU-T G.975 and G709 use the RS(255,239) as a standard FEC for subsea and terrestrial optical fiber transmission systems. Convolution encoder 1.2 FEC Convolution codes are error-correcting codes that slide a Boolean polynomial function over a data stream to create parity signals. The sliding application depicts the encoder's 'convolution' across the data, thus 'convolution coding'. Time-invariant trellis decoding is possible because convolution codes slide. Convolution codes may be maximum-likelihood soft-decoded with moderate complexity using time-invariant trellis decoding. Convolution codes provide cost-effective maximum likelihood soft choice decoding. Traditional block codes, represented by a time-variant trellis, are hard-decision decoded. Base code rate and encoder depth define convolution codes. The base code rate is typically given as, where is the input data rate and is the output symbol rate. The depth is termed the "constraint length" since the output depends on the current and prior inputs. The depth may also be given as the number of memory elements in the polynomial or the maximum possible number of states of the encoder (typically:). Many call convolution codes continuous. However, it may also be said that convolution codes have arbitrary block length, rather than being continuous, since most real-world convolution encoding is performed on blocks of data. Termination is common in convolutional block codes. The arbitrary block length of convolution codes can also be contrasted to classic block codes, which generally have fixed block lengths that are determined by algebraic properties.

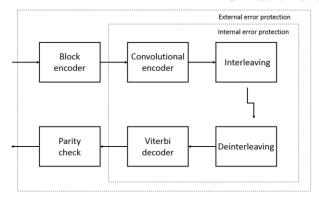


Fig 2 Stages of channel coding in GSM

Recursive and Non-Recursive Codes

The encoder on the picture above is a non-recursive encoder. Here's an example of a recursive one and as such it admits a feedback structure:

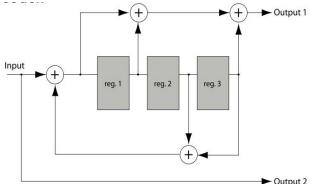


Fig. 3 Rate 1/2 8-state recursive systematic convolutional encoder

The example encoder is systematic because the input data is also used in the output symbols (Output 2). Codes with output symbols that do not include the input data are called non-systematic.

Recursive codes are typically systematic and, conversely, non-recursive codes are typically non-systematic. It isn't a strict requirement, but a common practice.

The example encoder in Img. 2. is an 8-state encoder because the 3 registers will create 8 possible encoder states (23). A corresponding decoder trellis will typically use 8 states as well.

Recursive systematic convolutional (RSC) codes have become more popular due to their use in Turbo Codes. Recursive systematic codes are also referred to as pseudo-systematic codes.

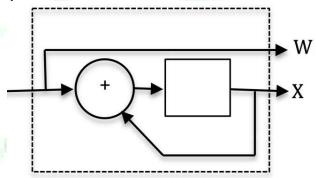


Fig. 4 Two-state recursive systematic convolutional (RSC) code

Trellis Diagram

A convolutional encoder is a finite state machine. An encoder with n binary cells will have 2n states.

Imagine that the encoder (shown on Img.1, above) has '1' in the left memory cell (m0), and '0' in the right one (m-1). (m1 is not really a memory cell because it represents a current value). We will designate such a state as "10". According to an input bit the encoder at the next turn can convert either to the "01" state or the "11" state. One can see that not all transitions are possible for (e.g., a decoder can't convert from "10" state to "00" or even stay in "10" state).

All possible transitions can be shown as below:

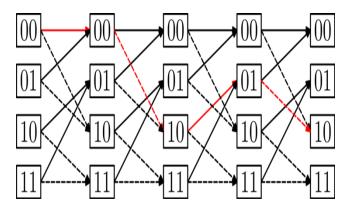


Fig. 5 A trellis diagram for the encoder on Img.1

II. LITERATURE REVIEW

Chandel, S. et.al. (2019) - In this presented work authors presented Viterbi algorithm. It's the remarkably algorithm to decode the convolution code. The main drawback is its high computational complexity and power hungry implementation for large coding rate since its constraint length should be high. In this work presented, Viterbi decoder with modified Branch metic calculation is designed in order to decrease the hardware usage and to simplify the proceedings [01].

Rawoof, M. A., et.al. (2019) - In this presented work authors presented the Viterbi algorithm. It's interesting as well as challenging for the researchers in the field of communications. It also has a broader range of applications in the digital communications field in this modern era of communications. This work helps in making use of efficient coding and decoding techniques with help of Viterbi algorithm. Also Viterbi algorithm can be easily understood and can be implemented easily. This work presents the implementation of the Viterbi algorithm using Verilog coding. Unlike other algorithms the proposed Viterbi algorithm has many advantages such as power consumption and the major advantage is error correction using Verilog [02].

Taotao, Z.,et.al. (2019, June) -In this presented work authors presented convolution code with large constraint length. It's plays an irreplaceable role in deep space communication and ultra-low frequency communication. Therefore, it is very important to find and test convolution code with large constraint length. Convolutional codes are widely used in deep space communication systems because of their high coding gain and simple and reliable encoders. The performance and implementation difficulty of convolutional codes mainly depend on the constraint length of the decimal codes and the coding efficiency. Enlarging and improving the coding gain of convolutional codes will greatly increase the complexity of decoders. The method of mathematical derivation and verification by mathematical tools is not suitable for convolutional codes with large large constraint length.. In order to improve the efficiency of inspection, the method of parallel multi-core computing needs to be introduced into the evil code test. Tests show that the FPGA-based parallel inspection method can improve the test efficiency by geometric multiples [03].

Giri, S. D., et.al. (2019, February) - In this presented work authors presented design of the structure of Convolutional code to reduce the influence from multi path and channel noise. Such a system can do flexibility relevancy ever-changing information rates, increasing vary, and increasing diversity, whereas giving economical resource utilization. This design is capable of transmitting data, in air errors and noise are tried to be minimized by using channel coding technique. The data speed can be increased by using different combinations of encoding and modulation techniques [04].

Harsh, G. B., et.al. (2019) -In this presented work authors presentedby analysis the affiliation amid the aphorism computations, a different alignment was projected, that is called MSR. By applying the projected alignment to the antecedent ACS architectures, Associate in nursing areaefficient architecture for algebraic computations was achieved. The projected architectures attain at the a lot of eighteen.1% abridgement in superior in befitting with the accomplishing after-effects that appreciably reduces the superior of the abounding MAP amount of the turbo decoder. What is more, the projected alignment may be acclimated for college abject styles to cut aback quality [05].

Sharma, V., et.al. (2019) -In this presented work authors presented the Viterbi decoding algorithm is mature error correct system, which will give us a BER at 8.6E-007 at 5db on an AWGN channel with BPSK modulation. By puncturing, for rate 2/3, we will pay around a 2db cost. For rate 3/4, we will pay for a 3 db cost during the transmission. From the results, we find the Viterbi decoding algorithm is mature error correct system, which will give us a BER at 8.6E-007 at 5db on an AWGN channel with BPSK modulation. By puncturing, for rate 2/3, we will pay around a 2db cost. For rate 3/4, we will pay for a 3 db cost during the transmission. For the time issue, we do not implement a higher performance Viterbi decoder with such as pipelining or interleaving. So in the future, with Pipeline or interleave the ACS and the traceback and output decode block, we can make it better [06]. Sujatha, E., et.al. (2019, March) -In this presented work authors presented Optimised MAP Turbo Decoder with Recursive QPP interleaver/Deinterleaver is simulated, synthesized and implemented using Xilinx Vivado 14.2 tool along with 28 nm CMOS Zynq Zed board FPGA device and the design results shows better performance to other conventional designs. Here, parallel computation of state metrics, branch metrics and intelligent memory scheduling for storage of intermediate metrics introduced at decoder level. Latency has been reduced by performing intelligent memory partitioning in turbo decoder. On-fly computation of address locations of interleaved data has been done in QPP interleaver to reduce the memory requirement. The designed optimized turbo decoder is low complex, simple and use single type and re-usable computing resource ACS units for various computations. By applying VLSI optimization techniques of parallel computation, intelligent memory partitioning 50% of the computation period is reduced such that the latency

decreased to compute extrinsic information from LLRs [07].

Gao, Z., Zhu, et.al. (2019) -In this presented work authors presented effects of soft errors on the configuration memory of a Viterbi decoder implemented on an SRAMFPGA. To that end, errors have been injected in the configuration memory, and the results show that the decoder is able to correct most of the errors when the BER is low or the SNR is high, but this immunity degrades significantly when the input signal deteriorates. Based on this first result, a new technique has been proposed to protect the Viterbi decoder against errors in the configuration memory. The scheme is based on an enhanced Duplication with Comparison (DWC) on which some internal signals are used to detect the copy in error so that upon a difference on the outputs, the ones from the correct copy can be used. The technique has been implemented and evaluated. The results show that the technique provides an efficient protection with a resource usage that is significantly lower than that of TMR. Compared to the scheme, the proposed technique achieves a much better reliability with a similar overhead [08].

Amarnath, V.et.al. (2019) -In this presented work authors presented BER performance of SECCC is investigated with/without parallelism and with different frame sizes and also compared with the TC, where both schemes employ the same RSC code and code rate. In order to invoke a complete comparison, the VHDL design of MAP decoder for both schemes is synthesized using Xilinx ISE. The synthesis results show that both schemes produce equal throughput and exhibit equal resource utilization for the same number of iterations, frame sizes and parallelism. Based on the simulation results presented in Section IV-B it can be concluded that for BER of 10-4, SECCC outperforms TC for frame sizes less than or equal to 2048 bits with parallelism of 16, 32 and 64 as well as for frame sizes greater than or equal to 6144 bits with parallelism of 256. However, Fig. 13 and Fig. 15 show that for achieving BER of 10-6 at parallelism of 32, 64, 128 and 256 with NII-method, TC still exhibits a small error floor. At higher parallelism the frame size is divided into smaller sized subframes and in case of SECCC, the single trellis is longer than each of the two trellises of TC, therefore SECCC performs better for smaller sized frames at higher parallelism [09].

Сайлаукызы, et.al. (2019) -In this presented work authors presented basis of theoretical and experimental research in the work, the problems are solved in the study of the Viterbi decoder of modern communication systems using convolutional codes. This paper discusses the architecture and details of the hardware implementation of a Viterbi decoder for a convolutional code with a basic coding speed 1/2, a constraint length K=7, a predetermined by generator polynomials (133, 177) 8. In particular, a convolutional code (133, 177) 8 is used in the standard of DVB-T digital terrestrial television, as the inner code encoding circuit cascade[10].

III.PROPOSED METHOD

The detection of the original stream can be described as finding the most probable path through the trellis. In the trellis diagram each node specifies an individual state at a given time and indicates a possible pattern of recently received data bits. The transition to a new state at the next timing cycle is indicated by each branch.

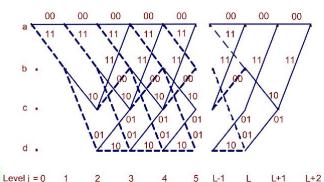


Fig. 6 Hard decision Viterbi decoding trellis diagram

Viterbi Decoder

Viterbi algorithm is used in the Viterbi decoder for decoding a bit stream that has been encoded using FEC based on a Convolutional code. Figure 5 shows the block diagram of Viterbi decoder. It consists of the following functional units, namely, Branch Metric Unit, Path Metric Unit, Survivor Memory unit.

Branch Metric Unit

A branch metric unit's function is to calculate branch metrics, which are normed distances between every possible symbol in the code alphabet, and the received symbol.

There are hard decision and soft decision Viterbi decoders. A hard decision Viterbi decoder receives a simple bitstream on its input, and a Hamming distance is used as a metric. A soft decision Viterbi decoder receives a bitstream containing information about the reliability of each received symbol. For instance, in a 3-bit encoding, this reliability information can be encoded as follows:

Table 1 Shows a 3-bit encoding

value	meaning	
000	strongest	0
001	relatively strong	0
010	relatively weak	0
011	weakest	0
100	weakest	1

101	relatively weak	1
110	relatively strong	1
111	strongest	1

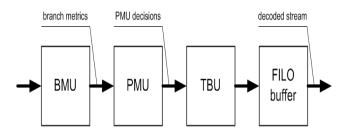


Fig. 7 a. A common way to implement a hardware viterbi decoder

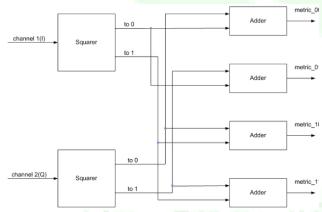


Fig. 8 A sample implementation of a branch metric unit

Software Implementation

For the implementation of proposed viterbi decoder using Xilinx ISE design suit software version 14.1. In Xilinx software provide two platform for the implementation of hardware descriptive language Verlog and VHDL. In this proposed work for the implementation of viterbi decoder use VHDL platform for the implementation and synthesis of proposed viterbi decoder use i-sim simulator. VHDL is mainly used to point the function of a circuit. Text models using VHDL which depicts a logic circuit that is refined by a synthesis program. The logic design is tested by using a simulation program. The design is interfaced by the logic circuits using the simulation models. The proposed design in VHDL IDE to produce the RTL schematic of the desired circuit. After that, the generated schematic may be verified exploitation simulation software system that shows the waveforms of inputs and outputs of the circuit. In the below section shows some important of VHDL implementation.

Design Entry

This is the first step of implementing a design on field programmable gate array. In this step the VHDL (Very

High Speed Integrated Chip Description Language) code of viterbi algorithm implementation Architecture was written using software Xilinx ISE 14.1. Structural modeling was used for writing the code. After writing the code syntax check was performed on the code to see whether code was properly written using correct syntax.

ISSN(ONLINE):2278 – 3814

Behavioral Simulation

The next step is behavioral simulation. This step verifies whether the design entered is functionally correct or not. This simulation is called RTL simulation. For this simulation VHDL Test bench was written for image algorithm implementation architecture and simulation was seen in Xilinx ISE Simulator. After it is verified it is functionally correct we move onto next step.

Design Synthesis

The VHDL code of image algorithm implementation is then synthesized using Xilinx XST which is a part of Xilinx ISE software. There is an option of Synthesis in process tab of Xilinx ISE which performs the operation of synthesis. The synthesis process is used for optimizing the design architecture selected. The resulting net list is saved to an NGC file. After design synthesis, synthesis report is generated which gives information about how many logic blocks are used and what is the device utilization of the design architecture synthesized. Synthesis basically maps the behavioral design to gate level design.

IV. RESULT ANALYSIS

The Viterbi decoder takes the distance measures and calculates the most likely transmitted signal. It does this by keeping a running history of the previously received signals in a path memory. The path-memory length of this decoder is 12. By keeping a history of possible sequences and using the knowledge that the signals were generated by a state machine, it is possible to select the most likely sequences.

Fig.. 9 Shows the I-Sim Simulator output

Instance and Process Name	Design Unit	Block Type
viterbi_test viterbi_test	viterbi_test(b	VHDL Entity
🌀 std_logic_1164	std_logic_1164	VHDL Package
std_logic_arith	std_logic_arith	VHDL Package
std_logic_signed	std_logic_sig	VHDL Package
🍘 textio	textio	VHDL Package
std_logic_textio	std_logic_tex	VHDL Package
std_logic_unsigned	std_logic_un	VHDL Package
math_real	math_real	VHDL Package

Fig.. 10 Shows the Different Lib. used in decoder

U unencoded_sig	
1 unencoded_sig_delayed	
₽ err	FALSE
l err_delayed	FALSE
15 sig_in_cnt	
la err_in_ont	0
14 mismatch	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
swindow0[0:3]	(UUU) (0000 (1111) ((1111) (0000) ((1111) (0000) ((1111) (0000) ((1111) (0000) ((1111) ((1111) (0000) ((1111) ((1111) (0000) ((1111) ((111)) ((1111) ((1111) ((1111) ((111)) ((1111) ((1111) ((1111) ((111)) ((1111) ((111)) ((1111) ((1111) ((111)) ((1111) ((1111) ((111)) ((1111) ((111)) ((1111) ((111)) ((1111) ((111)) ((1111) ((111)) ((1111) ((111)) ((1111) ((111)) ((1111)) ((1111) ((111)) ((1111)) ((1111) ((111)) ((1111)) ((1111) ((111)) ((1111)) ((1111)) ((111)) ((111)) ((111)) ((111)) ((111)) ((111)) ((111)) ((111))
U distance0	1000.01.0(10)(10)(10)(10)(10)(10)(10)(10)(10)(10
U distance1	1000. 1 10 10 10 10 1 00 1 10 1 10 1 10
U distance2	
U distance3	
survivors0(0:3)	(UUU) 0000 (1111) (COO) (COO) (COO) (1111) (0000 (COO) (1111) (0000 (COO) (COO) (COO) (COO) (1111) (0000 (1111) (0000 (1111) (0000) (1111) (1111) (0000) (1111) (11
1 clock_delay	2000 ps
la err_rate	0.100000
13 latency	1,00000
la random_seed1	1100000111001
1 random_seed2	1000010010010
1 random_seed3	11000000111001101
13 random_seed4	101010001100101

Fig.. 11 shows the resultant decoder output

Table 2 Shows Comparison of Proposed Method With Different Previous Works

D	Area i	n number	r of LUTs	tr
Paper				lo
	LTUs	Slices	Flip Flop	S G C
. a.			7	L C K
Proposed - Vetribi Decoder	75	32	28	1
FPGA Implementation of Viterbi Decoder for Software Defined Radio Applications	118	65	43	1
	Vetribi Decoder FPGA Implementation of Viterbi Decoder for Software Defined	Proposed - Vetribi Decoder FPGA Implementation of Viterbi Decoder for Software Defined	Proposed - Vetribi Decoder FPGA Implementation of Viterbi Decoder for Software Defined LTUs Slices 32 65	Proposed - Vetribi Decoder FPGA Implementation of Viterbi Decoder for Software Defined LTUs Slices Flip Flop 32 28 43

Project File:	viterbidecoder.xi	se	Parser E	rrors:		No Errors	
Module Name:	viterbi		Implem	entation State:		Synthesized	
Target Device:	xc6slx9-3tqg144	+	•E	rrors:		No Errors	
Product Version:	ISE 14.1		•٧	Varnings:		33 Warnings (0 nev	<u>w)</u>
Design Goal:	Balanced		• R	outing Results:			
Design Strategy:	Xiinx Default (ur	locked)	•1	iming Constraints:			
Environment:	System Settings		۰F	inal Timing Score:			
		tilization Summar					Ŀ
Logic Utilization					Ut	tilization	Ŀ
		tilization Summar		ited values)	-	tilization	<u>[-</u>
Logic Utilization		tilization Summar	y (estima	ited values) Available	0	tilization	
Logic Utilization Number of Slice Registers	Device U	tilization Summar	y (estima	Available 1144 572	0	tilization	09
Logic Utilization Number of Sice Registers Number of Slice LUTs	Device U	tilization Summar	y (estima 32 75	Available 1144 572	0	idization	09

Fig. 12 Shows the Proposed Viterbi Device Utilization Summery

V. Conclusion

In this research work first discussed on different viterbi decoder that is presented by different researchers in the last decade, describe in the literature survey. Also discuss the viterbi decoder and parts in technical background. The proposed viterbi doeoder is design by three different parts Branch Metric Unit, Path Metric Unit, Survivor Memory unit shown in the decoder. For the simulation of proposed viterbi decoder use Xilinx 14.1 and for synthesis of proposed design use I-sim. The proposed design successful synthesis and simulated without any error and proposed design shows low area in terms of number of slices, number of flip flops, and number of LUTs, also calculate the delay that is very low. These three parameters i.e. power, area and speed are always traded off. However, area and speed are usually conflicting constraints, so that improving speed results mostly in larger areas. In the result shows the comparison of proposed work with base paper on different result parameters such as look up tables (LUTs), number of slices, number of Gates and delay and shows better result as compare to previous work. The main aim was to implement convolution encoder and viterbi decoder with code rate 2/3 in compact VHDL. As VHDL implementation works in module form and it is comparatively simple than other Verlog language. Second, the design of viterbi decoder is in the receiver end so that, implementation would take less memory space. While acing path back towards front end, look up method saves t of time and complexity. The proposed decoder shows etter result in terms of look up tables (LTUs), number of lices, number of Flip Flop, global clock GCLCK.

REFERENCES

- [1.] Namratha, & Bakhar, M. (2023). Power and area optimized adaptive Viterbi decoder for high speed communication applications. International Journal of Information Technology, 15(1), 45-52.
- [2.] Devi, T. Kalavathi, E. B. Priyanka, P. Sakthivel, and A. Stephen Sagayaraj. "Low complexity modified viterbi decoder with convolution codes for power efficient wireless communication." Wireless Personal Communications 122, no. 1 (2022): 685-700.
- [3.] Rowshan, M., & Viterbo, E. (2021). List Viterbi decoding of PAC codes. IEEE Transactions on Vehicular Technology, 70(3), 2428-2435.
- [4.] Sokjabok, Siwakon, Chanon Warisarn, Santi Koonkarnkhai, and Jaejin Lee. "Modified 2D Viterbi algorithm using 2D modulation encoding constraints in BPMR systems." In 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 457-460. IEEE, 2020..
- [5.] Harsh, G. Bhuvanendra, and G. Lakshma Reddy.
 "A VLSI Design of LTE Turbo Encoder-Decoder with Radix 4 ACS Architecture." (2019).

- [6.] Sharma, Vibhuti, and Sunil Sharma. "Analyzing the Bit Error Rate & Hardware Implementation of Convolution Encoder & Viterbi Decoder." (2019)
- [7.] Sujatha, E., C. Subhas, and Giri Prasad.
 "Performance improvement of Turbo Decoder using VLSI Optimization Techniques." 2019
 International Conference on Vision Towards
 Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019.
- [8.] Gao, Zhen, et al. "Design and Implementation of Configuration Memory SEU-Tolerant Viterbi Decoders in SRAM-Based FPGAs." IEEE Transactions on Nanotechnology 18 (2019): 691-699.
- [9.] Amarnath, V., et al. "Simulation Improvement of Rising Field Programmable Gate Array Rectify Methodologies by Victimisation Playacting SEC-DAED-TAED-TETRA AED Code." Journal of Computational and Theoretical Nanoscience 16.5-6 (2019): 2362-2367.
- [10.] Сайлауқызы, Ж., and М. Коккоз. "Research of Noise Immunity of Viterbi Decoder in the Case of Different Depths of Decoding in MATLAB Environment and Projection on FPGA." (2019).
- [11.] Ahmadinejad, Hosein, Abolfazl Falahati, and Ebrahim Shafiee. "Design and Implementation of a Visible Light Communication and Coding System Based on IEEE802. 15.7 Standard." 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC). IEEE, 2019.
- [12.] Zbaid, Riham Ali, and Kasim K. Abdalla. "Design and Implementation of Convolutional Encoder and Viterbi Decoder Using FPGA." Journal of University of Babylon 26.3 (2018): 22-29.
- [13.] Kumari, Dasari Ratna, G. Srinivasa Rao, and K. Anka Siva Prasad. "Low Cost VLSI Architecture for Proposed Adiabatic Offset Encoder and Decoder." (2018).
- [14.] Thakur, Akash, and Manju K. Chattopadhyay. "Design and Implementation of Viterbi Decoder Using VHDL." IOP Conference Series: Materials Science and Engineering. Vol. 331. No. 1. IOP Publishing, 2018.
- [15.] Prasad, N., Indrajit Chakrabarti, and Santanu Chattopadhyay. "An energy-efficient network-onchip-based reconfigurable Viterbi decoder architecture." IEEE Transactions on Circuits and Systems I: Regular Papers 65.10 (2018): 3543-3554.
- [16.] Adiono, Trio, Ahmad Zaky Ramdani, and Rachmad Vidya Wicaksana Putra. "Reversed-Trellis Tail-Biting Convolutional Code (RT-TBCC) Decoder Architecture Design for LTE." International Journal of Electrical & Computer Engineering (2088-8708) 8.1 (2018).
- [17.] Tobola, John D., and James E. Stine. "Low-Area Memoryless optimized Soft-Decision Viterbi Decoder with Dedicated Paralell Squaring Architecture." 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2018.

- [18.] Xiaobo, Jiang, Zhang Fang, and Zeng Zhen. "Highperformance Decoder for Convolutional Code with Deep Neural Network." arXiv preprint arXiv:1812.11455 (2018).
- [19.] Yueksel, Hazar, et al. "Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders." IEEE Transactions on Circuits and Systems I: Regular Papers 65.10 (2018): 3529-3542.
- [20.] Adiono, Trio, et al. "Design of an OFDM system for VLC with a Viterbi decoder." IEIE Transactions on Smart Porcessing and Computing (SPC) 6.6 (2017): 455-465.
- [21.] Laddha, Deepali R., Archana O. Vyas, and M. E. Student. "FPGA Implementation of Viterbi Decoder for Long Survivor Path." International Journal of Engineering Science 11822 (2017).
- [22.] Wankhede, Shweta Anand, and Nilesh Bodne.
 "Review Paper On Implementation Of Low Power
 Hard Decision Viterbi Decoder In VLSI." (2017).
- [23.] Shende, Ms Sneha T., and Asst Prof SK Tadse.
 "Designing of Asynchronous Viterbi Decoder for
 Low Power Consumption using Handshaking
 Protocol: A Technical Review." (2017).
- [24.] Kadu, Sanket, et al. "Design and Implementation of Viterbi Encoder and Decoder on FPGA." International Journal 3 (2017): 30-33.
- [25.] Wankhede, Shweta Anand, and Nilesh Bodne. "A Configurable and Low Power Hard-Decision Viterbi Decoder in VLSI Architecture." (2017).
- [26.] Elwazan, Aly AE, A. A. Zekry, and H. L. A. Zayed. "Matlab Code for LTE Convolutional Code and Viterbi Decoder." International Journal of Engineering Research & Technology (IJERT) 6.3 (2017): 578-581.
- [27.] Nanthini, S., et al. "An Efficient Low Power Convolutional Coding with Viterbi Decoding Using FSM." Asian Journal of Applied Science and Technology (AJAST) Volume 1 (2017).
- [28.] Rocha, Leandro MG, et al. "Physical implementation of an ASIC-oriented SRAM-based viterbi decoder." 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2017.
- [29.] Jose, Jeena, and David Solomon George. "Design and implementation of a XOR-Free Lightweight Crypto-Coder System." (2017).
- [30.] Buzdar, Abdul Rehman, et al. "Area and energy efficient Viterbi accelerator for embedded processor datapaths." Int. J. Adv. Comput. Sci. Appl. 8.3 (2017): 402-407.