

Estimation of Software Size by Using UML- A Review
1Shefali Chourasia, 2Sapna Choudhry Jain

1Master Student, 2Professor and Head,

Department of Computer Science Engineering

SRGI, Jabalpur

Abstract: As we know that in Software Engineering, measuring the

software is an important activity. For measuring the software

appropriate metrics are needed. Using software metrics we are

able to attain the various qualitative and quantitative aspects of

software. Software Metrics are a unit of measurement to measure

the software in terms of quality, size, efforts, efficiency, reliability,

performance etc. Measures of specific attributes of the process,

project and product are used to compute software metrics.

INTRODUCTION

The objectives of this research are to make an empirical

evaluation of software size metrics based on UML with the help

of two case studies and then calculate that empirical data

consisting of actual values and thereby showing that how the

software size metrics will be derived from an UML model via

Class Diagrams and the below listed interaction diagrams.

1. Activity Diagrams

2. State chart Diagrams

3. Component Diagrams

4. Collaboration Diagrams

For carrying out this research, two real case studies namely (i)

Virtual Class Room and (ii) Data Secrecy System will be taken

for practical evaluation. The UML modeling of these systems

will be done and the software size metrics of these systems will

be evaluated based on the UML models, using the non-

functional techniques (LOC, FP, and COCOMO-II).The metrics

will be specified using UML extension mechanism and then will

be calculated with the help of a tool. The estimated values will

be compared with the actual software. Thus, the aim of our

research is to evaluate the empirical value sets of UML models

and thereby, showing the use of various size metrics and

validate their extraction procedure from UML design with the

help of interaction diagrams.

Brief History and Development of UML:

The UML effort started officially in October 1994 when Ram

Baugh joined Booch at Rational. The version 0.8 draft of the

Unified Method (as it was then called) was released in October

1995.Around the same time, Jacobson joined rational and the

scope of the UML project was expanded to incorporate OOSE

and then was the release of version 0.9 documents in June

1996.With the establishment of an UML consortium, with

several organizations ,came into light was the UML version 1.0.

And UML 1.0 was offered for standardization to the OMG in

January 1997.A revised version of UML1.1 was offered to the

OMG for standardization in July 1997 and it was finally

accepted by OMG in September 1997.and thereby, UML 1.1

was adopted by the OMG in November 14, 1997. Hence forth,

UML was maintained by OMG Revision Task Force, which

produces versions 1.3, 1.4 and 1.5.From 2000 to 2003, an

updated specification UML 2.0 was produced .After, being

reviewed by Finalization Task Force (FTF) for a year, the

official version of UML 2.0 was adopted by OMG in early

2005.The actual UML specification documents are found on the

OMG website at www.omg.org [4].

Introducing UML 2.0 Diagrams:

According to the latest UML 2.0 the diagrams are divided into

three categories [5]:

1. Structural Diagrams: These include the Class

Diagram, Object Diagram, Component Diagram,

Composite Structure Diagram, Package Diagram, and

Deployment Diagram.

2. Behavior Diagrams: include the Use Case Diagram

(used by some methodologies during requirements

gathering), Activity Diagram, and State Machine

Diagram.

3. Interaction Diagrams: all derived from the more

general Behavior Diagram, include the Sequence

Diagram, Communication Diagram, Timing Diagram,

and Interaction Overview Diagram.

 Software Sizing Metrics for Object-oriented systems:

The metrics that support the structural programming concepts

can also be applied to the Object- oriented concepts. The

Object-oriented Methodology focuses on objects. Object-

orientation is a technique for system modeling. Object-

orientation is ideally suited to creating models of real systems,

and especially for simulating the system [6].

Related Work

Many scientists and researchers have studied the software

metrics based on UML models. And thus have given their

immense contributions to the field of research in the computer

sciences .A lot of work has been done till date in the area of

research while considering software metrics related to UML

design.

In their paper Tong Yi et al. [7] analyzed and compared some

typical metrics for UML class diagrams from different

viewpoints , different types of relationships, different types of

metric values, complexity, and perfume theoretical and

empirical validation. They have tried to analyze the existing

popular metrics for UML class diagrams both theoretically and

experimentally from several different viewpoints. The analysis

Journal of Computing Technologies (2278 – 3814) / # 33 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 33

shows that most current metrics have their shortcomings while

being effective or efficient for some special characteristics of

the system.

Li Wei et al. [8] have presented an empirical study of OO

metrics in two iterative processes: the short-cycled agile process

and the long-cycled framework evolution process. They have

found that OO metrics are effective in predicting design efforts

and source lines of code added, changed, and deleted in the

short-cycled agile process and ineffective in predicting the same

aspects in the long-cycled framework process. This leads them

to believe that OO metrics’ predictive capability is limited to the

design and implementation changes during the development

iterations, not the long-term evolution of an established system

in different releases.

Mitchell et al. [9] presented a position paper outlining a

programmed of research based on the quantification of run-

time elements of Java programs. In particular, we adapt two

common object-oriented metrics, coupling and cohesion, so that

they can be applied at run-time. The results presented in this

paper are of a preliminary nature, and do not provide a

justifiable basis for generalization. However, she believed that

they do provide an indication that the evaluation of software

metrics at run-time can provide an interesting quantitative

analysis of a program.

Through their paper Christodoulakis et al. [10] have derived

the results on metrics used in object oriented environments.

Their survey includes a small set of the most well known and

commonly applied traditional software metrics which could be

applied to object–oriented programming and a set of object–

oriented metrics (i.e. those designed specifically for object–

oriented programming). These metrics were evaluated using

existing meta–metrics as well as meta–metrics derived from our

studies, based mostly on the practitioner’s point of view, and

emphasizing applicability in three different programming

environments: Object Pascal, C++ and Java.

In this paper M.Das et al. [11] have stated that Component-

Based Software Engineering (CBSE) has shown significant

prospects in rapid production of large software systems with

enhanced quality, and emphasis on decomposition of the

engineered systems into functional or logical components with

well-defined interfaces used for communication across the

components. In this paper, a series of metrics proposed by

various researchers have been analyzed, evaluated and

benchmarked using several large-scale publicly. Available

software systems. A systematic analysis of the values for various

metrics has been carried out and several key inferences have

been drawn from them. A number of useful conclusions have

been drawn from various metrics evaluations, which include

inferences on complexity, reusability, testability, modularity and

stability of the underlying components. The inferences are

argued to be beneficial for CBSE-based software development,

integration and maintenance.

Jamali [12] has stated the central role that software

development plays in the delivery and application of

information technology, managers are increasingly focusing on

process improvement in the software development area. The

focus on process improvement has increased the demand for

software measures, or metrics with which to manage the

process. The need for such metrics is particularly acute when an

organization is adopting a new technology for which established

practices have yet to be developed. He has addressed these

needs through the development and implementation of a suite of

metrics for OO design.

 Shaik Amjan, et al. [13] has presented the obtainable and new

Software metrics useful in the different phase of the Object-

Oriented Software Development Life Cycle. Metrics are used

by the software industry to itemize the development, operation

and maintenance of software .They have presented metrics for

Object-oriented Software systems. A mechanism is provided for

comparing measures , which examine the same concepts in

different ways , and facilitating more rigorous decision-making,

regarding the explanation of new measures and the selection of

existing measures for a specific goal of measurement.

Jahan Vafaei et al. [14] has proposed a new method to

calculate the complexity of UML models focusing on UC and

UUCP. They have used regression based model to build size

estimation from complexity design measures and is concluded

that some of the metrics such as attribute, method , inheritance

and communication between classes with regard to use

communication between classes with regard to use case

scenario of each class has fairly accurate prediction for size

estimation.

Chen Yue Boehm et al. [15] has also stated size as an

important metric for UML models via SLOC and FP. In this

paper, 14- project studied of three different sizing metrics which

cover different software lifecycle activities. Their results show

that the software size in terms of SLOC was moderately well

correlated with the number of external use cases and number of

classes.

Linda Edith .P et al. [16] has integrated the different Object-

oriented metric tools and made them available as a single add-

on. The main aim is to search some important tools and making

them as single add-on to provide the user-friendly environment.

In this paper are presented, a brief discussion of a number of

algorithms with a comparative study of a few significant ones

based on their performance and memory usage.

In their paper, Subramanyam Ramanath et al. [17] has laid

an emphasis on the design aspects of high quality Object-

oriented(OO) applications. They have also provided empirical

evidence supporting the aspects of OO design complexity

metrics .They have also found that the effects of these metrics

on defects are different across the samples from two different

programming languages-C++,Java.

Journal of Computing Technologies (2278 – 3814) / # 34 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 34

Tegarden P. David et al. [18] in their paper has given an

acceptable measure of software quality and quantify software

complexity. Also, their research reports the effects of

polymorphism and inheritance on the complexity of object-

oriented systems as measured by the traditional metrics. Their

research indicates the results that the traditional metrics are

applicable to the measurement of the complexity of object-

oriented systems.

Through their paper, Doban Orysolya et al. [19] stated the

experiments of a pseudo code estimation are detailed with a

specific emphasis on the cost estimation driven system design

.They have also stated that in the field of dependability this

methodology can be used to analyze solution alternatives and

may play a central role in the current trend of constricting

dependable systems from COTS elements by focusing effort to

the crucial parts of the target system.

Lavazza Luigi et al. [20] in her paper has reported that the

estimation of the development effort of real-time software using

Function – Points as the means for expressing the size of the

software. The immediate goals were the identification of a

reliable sizing method for estimation-oriented software sizing,

and the adoption of an estimation methodology and tool.UML –

based counting of function points appears as effective and

efficient , providing a systematic and unambiguous approach to

measurement.

In their paper Chidamber et al. [21] has made an analysis of a

set of metrics proposed by Chidamber and kemerer(1994) is

performed in order to assess their usefulness for practicing

managers. Also , the empirical results suggest that the metrics

provide significant explanatory power for variations in these

economic variables, over and above that provided by traditional

measures, such as size in lines of code, and after controlling for

the effects of individual developers.

Russo Barbara et al. [22] has stated in their paper a very

simple measure, the number of method s of an analysis object

is well and significantly co-relate with the size of final products

in both the data sets taken .In her paper, she has used Class

Metrics : external complexity and internal complexity, depth of

inheritance tree, number of children and number of attributes.

Through their paper, Doban Orsolya et al. [23] has stated that

the main objective of software project management is to assure

that a software product will be delivered in time, keeping the

cost limits and a proper quality. Thus, their main objective was

to provide a methodology , which is able to take into generate

the mathematical model of a software process optimization

problem based on UML diagrams.

Kumar Rakesh et al. [24] have highlighted in their paper that

the object-oriented software metrics proposed in 90’s by

Chidamber, kermerer and several studies were conducted to

validate the metrics and discovered several deficiencies. In their

paper, they have made a comparative study between the metrics

proposed by Chidamber, kermerer and Li.

G. Costagliola et al. [25] has stated in their paper FP-like

approach , named class point to estimate the size of object-

oriented products. In particular, two measures are proposed ,

which are theoretically validated showing that they satisfy well-

known properties necessary for size measures. An initial ,

empirical validation is also performed , meant to assess the

usefulness and effectiveness of the proposed measure to predict

the development effort of Object-oriented systems. Moreover, a

comparative analysis is carried out, taking into account several

other size measures.

Thapilyal et al. [26] in their paper has stated that the Object

Oriented design, today, is becoming more popular in software

development environment. Object oriented measurements are

being used to evaluate and predict the quality of software. But

an Object Oriented metric is able to treat function and data as

combined integrated object. In this paper they have evaluated

two metrics Weighted Method per Class (WMC) and Coupling

between Object Classes (CBO) of Chidamber and Kemerer

metrics Suite. They have done an empirical study and tried to

find out the nature of relationship of these metrics with defects.

In other words, it has been investigated whether these metrics

are significantly associated with defects or not. They have

deliberately taken different projects & tried to check if these

metrics can really be reliable measurements for predicting

defects when applied to inherently different projects.

In this paper, Kim Hyoseob et al. [27] has proposed some new

software metrics that can be applied to UML modeling elements

like classes and messages. These metrics can be used to predict

various characteristics at the earlier stages of the software life

cycle. A CASE tool is developed on top of Rational Rose1

using its Basic Script language and we provide some examples

using it. In this paper, some new software metrics were

introduced that can be used at the early stages of the software

life cycle. They measure various characteristics of model, class,

message, and use case in the future, these metrics need to be

evaluated using data from the industry.

In their paper Jurjens Jans et al. [28] has stated that

dependable systems have to be developed carefully to prevent

loss of life and resources due to system failures. This paper

gives an overview of reliability-related analyses for the design

of component-based software systems. This enables the

identification of failure-prone components using complexity

metrics and the operational profile, and the checking of

reliability requirements using stereotypes. They report on the

implementation of checks in a tool inside a framework for tool-

supported development of reliable systems with UML and two

case studies to validate the metrics and checks.

Gandhi Parul et al. [29] stated that Object-oriented metrics

plays an import role in ensuring the desired quality and have

widely been applied to practical software projects. The benefits

of object-oriented software development increasing leading to

development of new measurement techniques. Assessing the

reusability is more and more of a necessity. Reusability is the

Journal of Computing Technologies (2278 – 3814) / # 35 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 35

key element to reduce the cost and improve the quality of the

software. Generic programming helps us to achieve the concept

of reusability through C++ Templates which helps in

developing reusable software modules and also identify

effectiveness of this reuse strategy. The advantage of defining

metrics for templates is the possibility to measure the reusability

of software component and to identify the most effective reuse

strategy. In this paper they have proposed four new independent

metrics Number of Template Children (NTC), Depth of

Template Tree (DTT) Method Template Inheritance Factor

(MTIF) and Attribute Template Inheritance Factor (ATIF), to

measure the reusability for object-oriented systems.

Rosenberg Linda et al. [30] in their paper has discussed that

how the NASA projects, in conjunction with the SATC, are

applying software metrics to improve the quality and reliability

of software products. Reliability is a by-product of quality, and

software quality can be measured. They will demonstrate how

these quality metrics assist in the evaluation of software

reliability. They concluded with a brief discussion of the

metrics being applied by the SATC to evaluate the reliability .

Berardinelli Luca et al. [31]. in their paper has stated that the

modeling and validation of Non-Functional Properties (NFPs)

is a crucial task for software systems to satisfy user expectations

then for software projects to succeed. Nevertheless this research

field still suffers the heterogeneity of hermetic approaches

aiming to the modeling and validation of one single non-

functional property without sharing information among them

and loosing the view of the system as a whole. In this paper they

presented preliminary results on modeling and analysis of

different NFPs starting from a single UML model, suitably

extended with profiles like MARTE and DAM. To support the

validity of modeling they have shown how the approach allows

the derivation of Petri Net, Queuing Network and Fault Tree

models for analyzing, respectively, availability, performance

and reliability indices of a software system under development.

Thirugnanam Mythili et al. [32] in their paper has stated that

metrics measure certain properties of a software system by

mapping them to numbers (or to other symbols)according to

well-defined, objective measurement rules. Assessing the

Object Oriented Design (OOD) metrics is to predict potentially

fault-prone classes and components in advance as quality

indicators. To perform the assessment accurately, a sequential

life cycle model and a well-known OO analysis/design method

for java programming language is used. Design metrics helps to

identify potential problems in the early stages of the

development process. The quality metrics tool has been

developed to determine the various design metrics and the

quality attributes of Object Oriented program. These quality

attributes determines the complexity and efficiency of the

program.

Monperrus Martin et al . [33] has given that metrics offer a

practical approach to evaluate properties of domain-specific

models. However, it is costly to develop and maintain

measurement software for each domain specific modeling

language. In this paper, we present a model-driven and

generative approach to measuring models. The approach is

completely domain-independent and operational zed through a

prototype that synthesizes a measurement infrastructure for a

domain specific modeling language. This model-driven

measurement approach is model-driven from two viewpoints: 1)

it measures models of a domain specific modeling language; 2)

it uses models as unique and consistent metric specifications,

wart. a metric specification meta model which captures all the

necessary concepts for model-driven specifications of metrics.

The benefit from applying the approach is evaluated by four

case studies. They indicate that this approach significantly eases

the measurement activities of model-driven development

processes.

Shatnawi Raed [34] has stated in his paper that there is a

dearth of studies that identified thresholds values of Chidamber

and Kemerer (CK) metrics. In an empirical study on open-

source software, Eclipse project—Version 3.0, we identified

the thresholds values for CBO, RFC and WMC at two levels of

risks using a quantitative methodology based on the logistic

regression curve. These threshold values can be used to identify

the most error-prone classes.

Zivkovic Ales et al. [35] has stated in their paper a unified

mapping of UML models into function points. The mapping is

formally described to enable the automation of the counting

procedure. Three estimation levels are defined that correspond

to the different abstraction levels of the software system.

Through this paper, the gap between an object abstraction and

the FPA abstraction was fulfilled via unified mapping based on

four existing mappings. One important contribution was a

modified complexity table based on OO metrics that defined

less data elements to achieve the same complexity.

Arisholm [36] has given that a common way to quantify the

coupling is through static code analysis. However, the resulting

static coupling measures only capture certain underlying

dimensions of coupling. Other dependencies regarding the

dynamic behavior of software can only be inferred from run-

time information. This paper describes how several dimensions

of dynamic coupling can be calculated by tracing the flow of

messages between objects at run-time. Preliminary results

suggest that dynamic coupling may also be useful for

developing prediction models and tools supporting change

impact analysis.

In their paper , Lange Christian et al. [37] has stated that the

use of metrics as means of control and improvement plays an

important role in software engineering. They have proposed a

definition of completeness of a UML model and presented a set

of rules to assess model completeness. They have also reported

results from industrial case studies to assess the level of

completeness in practice. The amount of completeness and

consistency rule violations was very high. This paper has

defined a collection of rules that capture completeness

Journal of Computing Technologies (2278 – 3814) / # 36 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 36

constraints in terms of a meta-model that covers multiple views

and makes it clear that the use of tools for identifying

completeness violations can aid in enforcing more uniform

design conventions.

Through their paper , Uemura Takuya et al. [38] has presented

the detailed function-point analysis measurement rules using

design specifications based on the Unified Modeling Language

and described a function-point measurement tool, whose inputs

are design specifications developed on Rational Rose_. Also,

they have reported the tool validation work on software

involved in software evolution at an organization where they

have applied the tool to actual design specifications and

examined the differences between the function point values

obtained by the tool and those of an experienced function point

measurement specialist at the organization.

Through their paper, Dagpinar Melis et al. [39] have designed

and conducted an empirical study based on historical data

collected from the maintenance history of a medium-sized

object-oriented system. Indirect coupling has also been taken

into account in their work in order to evaluate its impact. They

have used multivariate regression analysis to select a suite of

metrics that serves as best predictors for maintainability. Their

study provides empirical evidence that object-oriented metrics

can effectively be used to predict maintainability of software

systems.

In their paper, Genero Marcela et al. [40] has presented a set

of metrics -based on UML relationships- which measure UML

class diagram structural complexity following the idea that it is

related to the maintainability of such diagrams. Also

summarized are two controlled experiments carried out in order

to gather empirical evidence in this sense .Quantitative

measurement instruments are useful to assess class diagram

quality in an objective way, thus avoiding bias in the quality

evaluation process. The results obtained in both experiment

shows that most of the metrics they have proposed (NAssoc,

NAgg, NaggH, MaxHAgg, NGen, NgenH and MaxDIT) are

good indicators of class diagram maintainability sub-

characteristics. Performing empirical validation with the metrics

is fundamental in order to demonstrate their practical utility.

Genero Marcela et al. [41] in their paper have introduced and

analyze a set of an existent object oriented metrics that can be

applied for assessing class diagrams complexity at the initial

phases of the object oriented development life cycle. .They

have presented a state of the art in OO metrics that can measure

the complexity of UML class diagrams obtained in the initial

phases of the OO development life cycle. Analyzing several

proposals, they deduce that there is a gap in OO metrics related

to relationships, such as association, aggregation and

dependency. They, therefore propose new metrics, to cover this

necessity. Their metrics are defined, at different levels of

granularity: class and package.

Basili R. Victor et al. [42] in their paper, their goal is to assess

Object-oriented Design metrics as predictors of fault-prone

classes and, therefore, determine whether they can be used as

early quality indicators. To perform their validation accurately,

they collected data on the development of eight medium-sized

information management systems based on identical

requirements. All eight projects were developed using a

sequential life cycle model, a well-known 00 analysis/design

method and the C++ programming language. Based on

empirical and quantitative analysis, the advantages and

drawbacks of these 00 metrics are discussed here . They

collected data about faults found in object -oriented classes.

Based on these data, they verified how much fault-proneness is

influenced by internal (e.g., size, cohesion) and external (e.g.,

coupling) design characteristics of 00 classes.

Through their paper, Rosenberg H . Linda et al. [43] has

stated that the evaluation of the utility of a metric as a

quantitative measure of software quality was based on the

measurement of a software quality attribute. It is also stated that

the Product Quality for code and design has five attributes.

They are Efficiency, Complexity, Understandability,

Reusability, and Testability/Maintainability.

Through his paper, Reißing Ralf [44] has presented a formal

model for object-oriented design called ODEM (Object-

oriented Design Model) . This model can serve as a foundation

for the formal definition of object-oriented design metrics.

ODEM is based on the UML meta-model, that provides a

formal model of object-oriented designs expressed in UML, the

most widespread design notation. Also, two case studies on

existing metrics suites for object-oriented design show the

benefits of applying ODEM to established object-oriented

design metrics. It also gives the examples of the use of ODEM

for defining object-oriented metrics.

Wolff .J et al. [45] in their paper have stated the development

and description of an evolutionary algorithm that layouts UML

class diagrams. It evolves the layout by mutating the positions

of class symbols, inheritance relations, and associations. The

process is controlled by a fitness function that is computed from

several well-known and some new layout metrics. In their

algorithm the control of the evolution does not refer to the fact

that we draw UML class diagrams. Elements are randomly

chosen for mutation. In the continuation of this work ,they will

emphasize the semantics of UML class diagrams, try out more

mutations and also consider crossovers.

Derezinska Anna [46] in his paper, has stated that the

dependency area of an element of a UML design is a part of the

design that is highly influenced by the given initial element.

Dependency areas are identified using sets of propagation rules

and strategies. Also, this paper is devoted to the specification of

the rules and strategies. They are specified using an extended

UML meta-model and expressions in the Object Constraint

Language (OCL). He has also presented the specification of

dependency areas identified in the UML designs. The approach

is based on the strategies and propagation rules. The concept of

dependency areas provides a basis for controlling changes

Journal of Computing Technologies (2278 – 3814) / # 37 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 37

within a design, as well as an impact of requirements on the

design and the generated code. It can support automation of

project management and maintenance.

Through their paper ,Xu Dianxiang et al. [47] have stated a

UML-based approach to testing whether or not an aspect-

oriented program conforms to its expected crosscutting

behavior. They have also explored the aspect-oriented UML

design models to derive tests for exercising interactions

between aspects and classes. Each aspect-oriented model

consists of class diagrams, aspect diagrams, and sequence

diagrams. For a method under test, they weave the sequence

diagrams of the advice on the method into the method’s

sequence diagram. Based on the woven sequence diagram and

class/aspect diagrams, they then generate an AOF (Aspect-

Object Flow) tree by applying coverage criteria such as

condition coverage, polymorphic coverage, and loop coverage

to woven sequence diagrams.The approach can help testers

reveal several types of faults that are specific to spectral

structures, such as incorrect advice type, strong or weak point

cut expressions, and incorrect aspect precedence.

Fernandes M. Joao et al. [48], in their paper have stated that

how the functional and the object-oriented views can be inter-

played to represent the various modeling perspectives of

embedded systems. They have also presented that how the main

modeling tool of the traditional structured methods, data flow

diagrams, can be integrated in an object-oriented development

strategy based on the unified modeling language. The

combination of the functional and object-oriented approaches,

represented by DFDs and UML, respectively was analyzed. The

rationale was to always have as the major model of the

implementation phase, some object or class diagram so that an

object-oriented programming languages could be used, but also

to include DFDs in the modeling process.

Wieringa Roel [49], in his paper has given a methodological

framework for software specification based on systems

engineering and show how the UML fits into this framework.

Also, an essential modeling approach to formalizing the UML

within this framework is argued. Finally, transition system

semantics for the UML is discussed, that fits this semantics

approach.

Webby Richard et al . [50], in their paper have introduced a

logical schema for the integration of software process modeling

and software measurement. The schema promotes a common

understanding of concepts and terminology, serving as a bridge

across the fields of process modeling and software metrics. Also

a formal unified view of the major information entities and their

inter-relationships has been presented. The schema is designed

to be general enough to be used with a variety of different

process modeling formalisms and metrics approaches. The

paper also incorporates several abstraction mechanisms to

support the handling of complex process information and

multiple evolving versions of that information. The schema

should be useful for both researchers and practitioners in

empirical process modeling studies of large-scale systems

development and evolution.

REFERENCES

[1]. Pressman S. Roger ‖Software Engineering‖ Sixth Edition,

McGraw Hill International 2005, pg649, chap 22, ISBN : 007-124083-

7.

[2]. Rumbaugh James, Jacobson, Ivar and Booch Grady, ―The Unified

Modeling Language User Guide‖ Second Edition 2008, pg 5, chap1.

[3]. Rumbaugh James, Jacobson Ivar and Booch Grady‖ The Unified

Modeling Language User Guide‖ Second Edition2008, pg 6, chap1.

[4]. Rumbaugh James, Jacobson Ivar and Booch Grady‖ The Unified

Modeling Language User Guide‖ Second Edition 2008.

http://www.uml.org

[5]. Jacobsn Magnus Christerson , Patrick Jonsson ,Gunnar

Overgaard‖ Object-oriented Software Engineering‖ 2008, pg 66,

chap3.

[6]. Yi Tong et. al,

‖A Comparison of Metrics for UML Class

Diagrams‖ ACM SIGSOFT Software Engineering Notes Page 1,

September 2004, Volume 29 .

[7]. Li Wei et .al, ‖An Empirical Validation of Object-Oriented Metrics

in Two Different Iterative Software Processes‖ IEEE Transactions On

Software Engineering , November 2003 , Volume 29 NO. 11, 1043.

[8]. Mitchell Aine et. al , ‖Toward a definition of run-time object-

oriented metrics‖ 7TH ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering , 2003.

[9]. Xenos M. et al. ―Object-oriented metrics – a survey‖ Proceedings

of the FESMA 2000, Federation of European Software Measurement

Associations, Madrid, Spain, 2000.

[10]. Arasimhan Lakshmi.V et.al, ―Evaluation of a Suite of Metrics for

Component Based Software Engineering (CBSE)‖ Issues in Informing

Science and Information Technology Volume 6, 2009.

[11]. Amali Mohsen Seyyed, ―Object Oriented Metrics‖, Proceedings

of Informatics and Systems, 7th International Conference on march 28-

30,2010.

[12]. Shaik Amjan et.al, ―Metrics for Object Oriented Design Software

Systems: A Survey‖ Journal of Emerging Trends in Engineering and

Applied Sciences (JETEAS) 1 (2): 190-198 c, 2010.

[13]. Jahan Vafaei et.al , ―A New Method Software Size Estimation

based on UML Metrics‖, Proceedings of Informatics and Systems, 7th

International Conference on march 28-30,2010

[14]. Chen Yue , Boehm Barry et.al , ―An Empirical Study of

eServices Product UML Sizing Metrics, Proceedings of Informatics

and Systems, 7th International Conference on march 36-46, 2010

[15]. Linda Edith P et. al , ―Metrics for Component based

Measurement Tools‖, International Journal of Science & Engineering

,Research Volume 2,Issue 5,May -2011

[16]. Subramanyam Ramanath et al, ―Empirical Analysis of CK

Metrics for Object-oriented Design Complexity:

Journal of Computing Technologies (2278 – 3814) / # 38 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 38

Implications for Software Defects‖, IEEE Transactions on Software

Engineering, Vol. 29/4, April 2003.

[17]. Tegarden P. David et al., ―Effectiveness of Traditional Software

Metrics for Object-Oriented Systems‖, Proceedings of Informatics and

Systems, 7th International Conference on march 52-60, 2010.

[18]. Doban Orysolya et. al, ―Cost Estimation Driven Software

Development Process‖, International Metals Review,1979, v. 24, pp.

149-173.

[19]. Lavazza Luigi et al., ―Using Function Point in the Estimation of

Real-Time Software: an Experience‖, Proceedings 5th Software

Measurement European Forum, Milan 2008.

[20]. Chidamber et al., ―Managerial use of metrics for Object-oriented

software: an exploratory analysis‖, IEEE Transactions on Software

Engineering,Vol.24 ,Issue 8

[21]. Russo Barbara et.al, ―Early estimation of software size in Object-

oriented environments‖: a case study in a CMM level 3 software firm.

[22]. Doban Orsolya et al., ―UML Based Software Process

Management‖, Periodica Polytechnica Ser.El. Eng Vol.47,No.3-

4,PP.213-228(2003)

[23]. Kumar Rakesh et al., ―Comparing Complexity in Accordance

with Object-oriented Metrics‖, International Journal of Computer

Applications, Article-8,2011.

Journal of Computing Technologies (2278 – 3814) / # 39 / Volume 5 Issue 1

 © 2015 JCT. All Rights Reserved 39

