
Baah et al. / Journal of Computing Technologies Vol 2, Issue 8 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 6

 Parameters for the Evaluation for the Choice of a

Good Programming Language

Baah, Barida Taylor, Onate Egerton
Department of Computer Science Department of Maths/Computer Science

University of Port Harcourt Rivers State University of Science and Technology

Port Harcourt. Port Harcourt.

Rivers State, Nigeria. Rivers State, Nigeria.
baridakara1@yahoo.com tayonate@yahoo.com

Abstract— Most of the problems face today by business,

organization, industrial and companies that uses automated data

processing system is as a result of wrong choice in considering a

programming language for an effective and efficient system

implementation because of this wrong choice of language most

business, organization and industrial fails to achieve it set goals.

This research papers will take a critical x-ray of those

parameters that will be consider before choosing a particular

language in other to achieve a good industrial, organizational

and business set goals. In this research paper work we shall look

at flexibility of the language, Interface design of the language,

Speed of the Language, Accessibility of the Language,

Compatibility of the languages, Language Safety, Responsiveness

of the Language and Expressiveness of the Language. Finally in

this research paper work we shall also develop a simple

algorithm and a flowchart that will test these parameters by

using assign variable to depict this various parameters, to test to

ascertain whether a particular programming languages meets

these parameters for evaluation or not. Finally, the methodology

that is used in this research is called Structural System Analysis

and Design Method (SSADM) and it was implemented using

Turbo Pascal programming language version 1.5.

Keywords— Parameters, Evaluation, Accessibility, x-ray,

Responsiveness, flexibility, Expressiveness, Interface design,

Completeness and Compatibility.

I. INTRODUCTION

Every day we as human being are face with the problem

of choice in our day to day life the choice we make today

definitely affect our life as an individual either in a positive

way or in a negative way. So the choice we make has a lot to

do with us; that is to say that if you make a good choice as an

individual you will have a positive or good result but when

you make a wrong choice it will yield to negative results.

This is also applicable to any business, organization,

industrial and any other Parastatals the day to day running of

every businesses is wholly dependent on the choice or

decision that is made. In business organization that require

automated computer system in it implementation, the choice

of the programming language has a lot do if such business,

institution or organization must achieve it sets goals. So for

any programming language to be chosen care must to taken to

look at that programming language carefully before going for

that language, because wrong choice of language will

certainly make the organization to fail due to wrong choice of

programming language.

II. Parameters for the Choice of a good

 Programming Language

(1) Flexibility of the Language: Flexibility of the

programming languages has to do with the ability of the

choice of a particular programming language to allow for

changes without altering some part or the entire program.

(2) Interface design of the Language: This is another

very important aspect to consider when choosing a particular

programming language, the level of interface design define

usability of the programming language. So the programming

language should have a very good interface design as it will

enable new programmers or professionals programmers to

make good use of the language easily without spending much

time to study how to use the language due its complexity in

the interface design of the programming language.

(3) Completeness of the Language: We all need libraries

in order to make reference to whenever we are face with

difficulties, so also in choose of a good programming

language it must have a good libraries system in order to assist

new programmers or even professional programmers to make

reference to. Assuming you want to start your next project

writing XML parsers and DB integrations, or you just want to

find the right library and get started? I try out a lot of

languages, and this is where most of the otherwise great

languages fall flat. This is a chicken and egg problem because

how many libraries there are for your language is mostly a

function of how many users you have, and you don’t attract a

lot of programmers when they need to write everything

themselves from scratch. The best way to have instant access

to lots of libraries is to have seamless C integration, since

almost anything you will ever need was written in (or for) C.

Or you could just grow a giant user-base like Perl or Python.

(4) Speed of the Language: There is a wise saying that

―time is money‖ So a program that achieve great thing within

a low speed is not better than a program that cannot achieve

mailto:baridakara1@yahoo.com
mailto:tayonate@yahoo.com

Baah et al. / Journal of Computing Technologies Vol 2, Issue 8 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 7

great thing but it much more faster in it execution of program

at a high speed. Speed appears to be the only criterion on

some peoples list of features. But just because its over-valued

doesn’t mean its not important. The claims of which language

is fastest is hotly contested, I will just say that some

languages, like C, C++, Scheme, and OCaml pay close

attention to runtime performance, and some (like Ruby) do

not.

Most languages let you call C code as the escape valve

for performance, but in todays computers speed comes from

optimized memory layouts and cache efficiency, so to keep

that C code fast, the data set needs to be already in memory in

an efficient structure, which means that you will end up

writing more and more C code to expose that data to your

higher level language, and in the process importing most of

the C resource management headaches as well. Languages

that give you explicit control over memory layout or have

seamless integration with C (like C++ or objective-C) have a

clear performance advantage.

There is also a class of languages like OCaml and many

Scheme and Lisp implementations that have very good

performance most of the time, so a trip to C is rare, and the

final note on speed is that often the best way to speed up code

is to improve the algorithm. The advantage of some of the

slower high-level languages is that implementing the

sophisticated algorithms is much easier.

(5) Accessibility of the Language: In this case, in

making your choice for good programming language care

must be taking to know if the programming language is easily

accessible or not but if the language is not very much

accessible no matter how good that language is, there is no

need to go for that particular programming language because

whenever there is a problem with that language, may be due to

corruption on your computer system or virus as the case may

be and you need to install the language it will be difficult for

you to get back the language and install on your system.

(6) Compatibility of the Language: The compatibility of

a programming language is the ability of programming to be

compatible to other programming languages so as to enhance

the workability and the efficiency of the language in the

realization of the business or organizational goals. It has to do

with integrating a particular language to another programming

language so as to have robust system implementation. For

example integrating or combining MatLab with C/C++

program.

(7) Language Safety: Have you ever heard an OCaml or

Haskell programmer claim that "once it compiles, it just

works"? It is a bit of an exaggeration, but not as much as you

might think. Often your compile errors are pointing out real

issues you need to address for the correctness of your code,

and sometimes they point out issues in your whole approach

that will cause you to rewrite sections of your code without

ever having run the broken version.

That is safety. It is the feeling that your programming

language is watching your back. Haskell is a clear winner on

the safety front. Its type system is powerful enough to specify

some surprisingly sophisticated constraints. OCaml is a close

second, and it falls off dramatically after that. It is also

important also to point out that dynamic typing has a

significant disadvantage when it comes to safety because you

need to run the program to find the error, but since they

usually do a pretty good job of trapping the error at runtime in

ways that are easy to debug, they have an advantage over

languages without any runtime support such as C or C++.

(8) Responsiveness of Language: In language

responsiveness for example in Excel, when you change a

number in a cell, all the other cells are updated immediately.

That is responsiveness. The more steps between changing

code and seeing the result of the change, the harder it becomes

to stay in the programming flow.

The big winner in this area is Smalltalk with its live

image. But other languages with powerful REPLs like Lisp

and Scheme come in close second.

OCaml, Haskell, Ruby, and Python all have REPLs, but

any Lisper will tell you that they are just not the same. Not

that they aren’t useful because you could be using any of the

other languages where the best case scenario is fast compile

times so you can get through your edit-compile-run cycle.

The reason why a good programming language needs to

be responsive is so that you can be productive. And it is not

just a matter of counting the wasted time waiting for compiles

(although it can be significant), it is the destruction of your

flow. When your changes are instant, you keep making

changes and your mind settles into the contours of the

problem. When you have even 1 minute breaks between

changes, you lose track of what you were doing, and you lose

focus.

http://shootout.alioth.debian.org/u64q/benchmark.php?test=all&lang=all&xfullcpu=1&xmem=0&xloc=0
http://shootout.alioth.debian.org/u64q/benchmark.php?test=all&lang=all&xfullcpu=1&xmem=0&xloc=0
http://shootout.alioth.debian.org/u64q/benchmark.php?test=all&lang=all&xfullcpu=1&xmem=0&xloc=0
http://dynamo.iro.umontreal.ca/~gambit/wiki/index.php/Main_Page
http://fishbowl.pastiche.org/2004/10/28/ruby_performance/
http://okmij.org/ftp/Haskell
http://en.wikipedia.org/wiki/Dynamic_typing#Dynamic_typing
http://www.squeak.org/
http://onsmalltalk.com/smalltalk-in-action
http://onsmalltalk.com/smalltalk-in-action
http://onsmalltalk.com/smalltalk-in-action
http://en.wikipedia.org/wiki/REPL
http://en.wikipedia.org/wiki/Lisp_programming_language
http://plt-scheme.org/
http://caml.inria.fr/ocaml/
http://www.haskell.org/ghc/
http://ruby-lang.org/
http://www.python.org/
http://old.ma.is/kenn/andy/Bradleycourse/Notes/chap06/ch06_7.html
http://en.wikipedia.org/wiki/Flow_(psychology)

Baah et al. / Journal of Computing Technologies Vol 2, Issue 8 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 8

(9) Expressiveness of the Language: The expressiveness

of a programming language is the ability to reshape the

language until you can express your program naturally. Some

languages like Lisp and Scheme let you implement a new

internal language for describing your program concisely.

Smalltalk, Ruby and Haskell have basic building blocks and

lightweight syntax that makes it easy to define new language

constructs for your particular problem.

But it is not all about making embedded mini-languages,

that is just one very effective version of expressiveness. It is

also how well the language supports you with features that let

you remove boilerplate code and just write the code that is

needed to do the job.

It is a hard quality to pin down, but in many ways it is the

most important because code is meant to be read by humans

first and the computer second. Each line of code is a liability,

it will need to be maintained. If it is not doing anything for

you but telling the compiler things it could have figured out

for itself, then it’s a line wasted.

More than anything, this is the quality that attracts

programmers and rewards them for their effort in learning the

language. That is the reason that Ruby meta-programming

took off after Rails hit it big: when people saw what could be

done, how you could write working Ruby that read like a

pseudo-code description of the program, they became drunk

on the possibilities it opened up. Writing code in a highly

expressive language is fun.

III. Research Methodology

The methodology that is beseech in this research work is

called the structural system analysis and design method which

is a waterfall method for the production of an information

system design. SSADM can be thought to represent a pinnacle

of the rigorous document-led approach to system design.

Structural System Analysis and Design Method

(SSADM) is a systems approach to the analysis and design of

information systems. one particular implementation of

structural system analysis and design method which is builds

on the work of different schools of structured analysis and

development methods, such as Peter Checkland’s, software

system methodology, Larry Constantine’s Structured Design,

Edward Yourdon’s Structured Method, Michael A Jackson’s,

Jackson Structured Programming and Tom DeMarco’s

Structured Analysis (Mike, 1999).

The reasons of chosen this research methodology is due

to the following advantages:

1. The SSADM is mature

2. SSADM provide a clear separation of logical and

physical aspects of the system.

3. It is well-defined techniques and also well

documented.

4. It also provides an environment for the user

involvement also.

IV. Algorithm for Parameters Evaluation

1: Display Message "Welcome to a Program to

test for Parameters for "Evaluation of the

Choice of a Good Programming Language"

2: Declare Choice as Character

Display Message "Enter Your Choice of

Programming Language"

Choice

3: Display "Is the Programming language

Flexible?"

Display "Do the language have good

interface design?"

Display "Do the language have library

(completeness)?"

Display "Is the Programming language

Fast?"

Display "Is the Language easily accessible?"

Display "Is the Language Compatible?"

Display "Is the Language Safe?"

Display "Do the language update formulae

immediately for change (Responsiveness)?"

Display "Is the language Expressiveness?"

4: Display "Enter Y for Yes and N for No"

5: Declare Array Parameter[10] as characters

 Declare I and Yes as integer

 Initialize Yes = 0

 6: Setup Loop While I< 9

Test if Parameter[I] = "Y" OR

Parameter[I]== "y" Then

 Yes → Yes + 1

 Test if Parameter[I] = ―N

or Parameter[I]= ‖n‖ then No → No + 1

 EndLoop

 EndIF

 7: Test If Yes >= 6 Then

Display Choice, "is a Very Good

Programming Language Choice"

 EndIF

 8: Test If Yes < =4 Then

Display Choice, ―is a bad Programming

Language Choice‖

 EndIF

 9: Test If Yes == 5 Then

Display Choice,"an Average Programming

Language Choice"

 EndIF

http://www.paulgraham.com/onlisp.html
http://en.wikipedia.org/wiki/Type_inference
http://en.wikipedia.org/wiki/Type_inference

Baah et al. / Journal of Computing Technologies Vol 2, Issue 8 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 9

V. A Program Flowchart

Display Choice ―a Bad

Programming

Language Choice‖

F

A

For I = 0

I= I+1

< 9

Display ― Enter Your Response Y – Yes

and N – No‖

Parameter[I]

If

Parameter[P]==

―Y ‖ or

Parameter[P]==

―y ‖ Yes = Yes + 1

T

P

Test IF Yes >=

6

Display Choice ―a Good

Programming Language

Choice‖

T

F

Test IF Yes

<=4

T

F

Test IF Yes = 5 T

Display Choice ―Average

Programming Language

Choice‖
F

STOP

Fig 2 A flowchart showing Parameter test for choice of a

Good Programming Language

START

Yes → 0

Display ―Welcome to a Program to test for Parameters for the

Evaluation of the Choice of a Good Programming Language‖

Display ―Is the Programming Language Flexible?‖

Display ―Do the Language have a good Interface?‖

Display ―Do the Language have library

(Completeness)?‖

Display ―Is the Programming Language Fast?‖

Display ―Is the Programming Language easily

Accessible?‖

Display ―Is the Language Compatible?‖

Display ―Do the Programming Language Update

formulae immediately for a change (Responsiveness) ?‖

Display ―Is the Programming Language Safe?‖

Display ―Is the Programming Language Expressive?‖

Display ―Make Your Choice of Programming

Language‖, Choice

A

Fig 1 A flowchart showing a Welcome Message and a Display of

Parameters for Evaluation

Baah et al. / Journal of Computing Technologies Vol 2, Issue 8 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 10

VI. Input and Output Specifications

This addresses how data are been capture from the user

through the keyboard by entering the data items and how the

results are been display on the screen as it is shown in the

figures below:

From Fig. 4 above shows that C++ programming language is

been evaluated as a good programming language choice based

on the sets of questions which required a Y for Yes and N for

No Responses; to shows that the programming language

actually meet up a good choice of language.

Again, from Fig. 6 above shows that Fortran programming

language is been evaluated as an average programming

language choice based on the sets of questions which required

a Y for Yes and N for No Responses; to shows that the

programming language meet the average bench mark of

choice.

VII. Conclusion

In a general conclusion, the Choice of a good

Programming language depend on the parameters which is use

for evaluation of the language, this is to say that the success of

any business, parastatals, institutions and organizations is

dependant on the choice of the language that is use in system

implementation. Therefore, care must be taking in considering

these various parameters that is use for the evaluation to check

Fig. 3 A Screenshot showing a welcome message and ―C++‖ input as choice

of Programming Language

Fig. 4: A Screenshot showing Response and Result display after evaluating the

parameter for choice of C++

Fig. 5 A Screenshot showing a welcome message and ―Fortran‖ input as choice of
Programming Language

Fig. 6 A Screenshot showing Response and Result display after evaluating the
parameter for choice of Fortran

Baah et al. / Journal of Computing Technologies Vol 2, Issue 8 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 11

whether most of the parameters are meet, before considering a

particular programming language as good for business,

parastatals, institutions and organizations because wrong

choice of language is capable of ensuring that the set goals are

not achievable thereby leading to general systems failures, due

to wrong choice of programming language.

ACKNOWLEDGMENT

We commend the wonderful efforts of Causal Productions

and also acknowledge the effort of Michael Shell and other

contributors for developing and maintaining the IEEE LaTeX

style files which we have use in the template format in the

preparation of this research paper work.

REFERENCES

[1] Gupta V., (2007),Comdex.NET Programming. DreamTech Press,

New Delhi, India. pp. 2

[2] Mike G. and Karel R., (1999), History of SSADM, SSADM an

Introduction. pp. 2-5.

