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Abstract  

The importance of carrying out effective and 

sustainable agriculture is getting more and 

more obvious. In the past, additional fallow 

ground could be tilled to raise production. 

Nevertheless, even in industrialized countries 

agriculture can still improve on its overall 

yield. Modern technology, such as GPS-based 

tractors and sensor-aided fertilization, enables 

farmers to optimize their use of resources, 

economically and ecologically. However, 

these modern technologies create heaps of 

data that are not as easy to grasp and to 

evaluate as they have once been. Therefore, 

techniques or methods are required which use 

those data to their full capacity – clearly being 

a data mining task. This paper presents some 

experimental results on real agriculture data 

that aid in the first part of the data mining 

process: understanding and visualizing the 

data. We present interesting conclusions 

concerning fertilization strategies which result 

from data mining. 
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Introduction 

Recent worldwide economic development 

shows that agriculture will play a crucial role 

in sustaining economic growth, both in 

industrialized as well as in developing 

countries. In the latter countries agricultural 

development is still in its early stages and 

production improvements can easily be 

achieved by simple means like introduction of 

fertilization. In industrialized countries, on the 

other hand, even the agricultural sector is 

mostly quite industrialized itself, therefore 

improvements are harder to achieve. 

Nevertheless, due to the adoption of modern 

GPS technology and the use of ever more 

different sensors on the field, the term 

precision farming has been coined. According 

precision farming is the sampling, mapping, 

analysis and management of production areas 

that recognizes the spatial variability of the 

cropland. 

In artificial intelligence terms, the area of 

precision farming (PF) is quite an interesting 

one as it involves methods and algorithms 

from numerous areas that the artificial 

intelligence community is familiar with. When 
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analyzing the data flow that results from using 

PF, one is quickly reminded of data mining: 

an agriculturist collects data from his cropland 

(e.g., when fertilizing or harvesting) and 

would like to extract information from those 

data and use this information to his 

(economic) advantage. A simplified data flow 

model can be seen in  1. Therefore, it is 

clearly worthwhile to consider using AI 

techniques in the light of precision farming. 

 

Fig. 1: Data mining for agriculture data 

Data Description 

The data available in this work have been 

obtained in the year 2006 on a field near 

K¨othen, north of Halle, Germany1 All 

information available for these 72- and 32-

hectare fields2 was interpolated using kriging 

to a grid with 10 by 10 meters grid cell sizes. 

Each grid cell represents a record with all 

available information. 

During the growing season of 2006, the field 

was subdivided into different strips, where 

various fertilization strategies were carried 

out. For an example of various managing 

strategies, this also shows the economic 

potential of PA technologies quite clearly. The 

field grew winter wheat, where nitrogen 

fertilizer was distributed over three application 

times during the growing season. Overall, 

there are seven input attributes – accompanied 

by the yield in 2006 as the target attribute. 

Those attributes will be described in the 

following. In total, for the smaller field (F131) 

there are 2278 records, for the larger field 

(F330) there are 4578 records, thereof none 

with missing values and none with outliers. 

Electric Conductivity – EM38 

A non-invasive method to discover and map a 

field’s heterogeneity is to measure the soil’s 

conductivity. Commercial sensors such as the 

EM-383 are designed for agricultural use and 

can measure small-scale conductivity to a 

depth of about 1.5 meters. There is no 

possibility of interpreting these sensor data 

directly in terms of its meaningfulness as 

yield-influencing factor. But in connection 

with other site specific data, as explained in 

the rest of this section, there could be 

coherences. 

Fertilization Strategies 

There were three different strategies that have 

been used to guide the nitrogen fertilization of 

the fields. F131 contains data resulting from 

two strategies (F, N) and F330 contains data 

from three strategies (F, N, S). The three 

strategies are as follows: 
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F – Uniform distribution of fertilizer 

according to long-term experience of the 

farmer 

N – Fertilizer distribution was guided by an 

economic optimization with a multilayer 

perceptron model; the model was trained 

using the above data with the current year’s 

yield as target variable that is to be predicted 

S – Based on a special nitrogen sensor – the 

sensor’s measurements are used to determine 

the amount of nitrogen fertilizer that is to be 

applied. 

Using Multi-Layer Perceptions and Self-

organizing Maps Approach 

This section deals with the basic techniques 

that we used to model and visualize the 

agricultural yield data. For modeling, we have 

used Multi-Layer Perceptrons, as discussed. 

To visualize the data we will use Self-

Organizing Maps (SOMs). Therefore, SOMs 

will comprise the main part of this section. 

Multi-Layer Perceptrons for Modeling 

In recent years, we have modeled the available 

data using a multi-layer perceptron (MLP). To 

gain more insights into what the MLP has 

learned, in this paper we will use self-

organizing maps to try to better understand the 

data and the modeling process that underlies 

MLPs. In, neural networks have been used for 

optimization of fertilizer usage for wheat, in 

the process has been carried out for corn. In 

we could show that MLPs can be used for 

predicting current year’s yield. For a detailed 

discussion of the used MLP structure and 

parameters, we basically used a feed forward-

back propagation multi-layer perceptron with 

two hidden layers. The network parameters 

such as the hidden layer sizes were determined 

experimentally. A prediction accuracy of 

between 0.45 and 0.55 metric tons per hectare 

(100 × 100 metres) at an average yield of 9.14 

tha could be achieved by using this modeling 

technique. 

Self-Organizing Maps for Visualization 

Our approach of using SOMs is motivated by 

the need to better understand the available 

yield data and extract knowledge from those 

data. SOMs have been shown to be a practical 

tool for data visualization. Moreover, SOMs 

can be used for prediction and correlation 

analysis, again, mostly visually. As such, the 

main focus in explaining Self-Organizing 

Maps in the following will be on the visual 

analysis of the resulting maps. 

Self-Organizing Maps have been invented in 

the 1990s by Teuvo Kohonen. They are based 

on unsupervised competitive learning, which 

causes the training to be entirely data-driven 

and the neurons on the map to compete with 

each other. Supervised algorithms like MLPs 

or Support Vector Machines require the target 

attribute’s values for each data vector to be 
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known in advance whereas SOMs do not have 

this limitation. 

Grid and Neigborhood: An important feature 

of SOMs that distinguishes them from Vector 

Quantisation techniques is that the neurons are 

organized on a regular grid. During training, 

not only the Best-Matching Neuron, but also 

its topological neighbors are updated. With 

those prerequisites, SOMs can be seen as a 

scaling method which projects data from a 

high-dimensional input space onto a typically 

two-dimensional map, preserving similarities 

between input vectors in the projection.  

Structure: A SOM is formed of neurons 

located on a usually two-dimensional grid 

having a rectangular or hexagonal topology. 

Each neuron of the map is represented by a 

weight vector mi = [mi1,min]T , where n is 

equal to the respective dimension of the input 

vectors. The map’s neurons are connected to 

adjacent neurons by a neighborhood 

relationship, superimposing the structure of 

the map. The number of neurons on the map 

determines the granularity of the resulting 

mapping, which, in turn, influences the 

accuracy and generalization capabilities of the 

SOM. 

Training: After an initialization phase, the 

training phase begins. One sample vector x 

from the input data set is chosen and the 

similarity between the sample and each of the 

neurons on the map is calculated. The Best-

Matching Unit (BMU) is determined: its 

weight vector is most similar to x. The weight 

vector of the BMU and its topological 

neighbors are updated, i.e. moved closer to the 

input vector. 

The training is usually carried out in two 

phases: the first phase has relatively large 

learning rate and neighborhood radius values 

to help the map adapt towards new data. The 

second phase features smaller values for the 

learning rate and the radius to fine-tune the 

map. 

Visualization: The reference vectors of the 

SOM can be visualized via component plane 

visualization. The trained SOM can be seen as 

multi-tiered with the components of the 

vectors describing horizontal layers 

themselves and the reference vectors being 

orthogonal to these layers. From the 

component planes the distribution of the 

component values and possible correlations 

between components can be obtained easily.  

Experimental Results 

This section will present some of the 

experimental results that we have obtained 

using SOMs on agricultural data. The first two 

parts will deal with the analysis of the maps 

generated from the complete data set 

(containing different fertilization strategies). 

The subsequent two parts will deal with those 
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subsets of the data where a MLP has been 

used for yield prediction and optimization 

Results for F131-all 

The full F131-all dataset consists of the F and 

N fertilization strategies where each data 

record is labeled accordingly. After training 

the SOM using the preset heuristics from the 

toolbox [14], the labeled map those results. 

The corresponding U-Matrix that confirms the 

clear separability of the two fertilization 

strategies is shown in amount of fertilizer for 

the three different fertilization times is 

projected onto the same SOM. On those three 

maps it can also be seen that the different 

strategies are clearly separated on the maps. 

Another result can be seen. As should be 

expected, the REIP49 value (which is an 

indicator of current vegetation on the field) 

correlates with the YIELD06 attribute. 

Results for F330-net 

As in the preceding section, F330-net 

represents a subset of F330-all: it contains 

those data records from F330-all that were 

labeled N, i.e. in those field parts the MLP 

predictor was used for fertilizer optimization. 

Again, to convey a connection: the MLP has 

learned that where YIELD05 was high (lower 

left of map), there is less need of N1 fertilizer 

whereas the rest of the field needs a high 

amount. For N2, another network is trained 

with more input, now N2 and YIELD05 seem 

to correlate, although the correlation is not as 

clear as with the F131-net dataset. 

Furthermore, it is expected that REIP49 and 

YIELD06 correlate, even the EM38 value for 

electromagnetic conductivity correlates with 

the said attributes. Additionally, the 

corresponding scatter plot in shows a 

separation between clusters of low 

EM38/YIELD06 values and high 

EM38/YIELD06 values. 

From the agricultural point of view, the F330 

field is quite different from the one where the 

F131 data set was obtained; they are located 

5.7km away from each other. This difference 

can be clearly shown on the SOMs. So, even 

though the fields are quite close, it is 

definitely necessary to have different small-

scale and fine-granular fertilization and 

farming strategies. 

5 Conclusions 

In this paper we have presented a novel 

application of self-organizing maps by using 

them on agricultural yield data. After a 

thorough description and statistical analysis of 

the available data sets, we briefly outlined the 

advantages of self-organizing maps in data 

visualization. A hypothesis on the differences 

between two fields could clearly be confirmed 

by using SOMs. We presented further results, 

which are very promising and show that 

correlations and interdependencies in the data 
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sets can easily be assessed by visual 

inspection of the resulting component planes 

of the self organizing map. Those results are 

of immediate practical usefulness and 

demonstrate the advantage of using data 

mining techniques in agriculture. 
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