

AN ASSOCIATION RULE MINING ALGORITHM
IN DISTRIBUTED DATA MINING SYSTEM

Y.Venkata Raghavarao

1
, Dr.L.S.S Reddy

2
, Dr.A.Govardhan

3

1
Research Scholar, JNT University, Hyderabad, A.P, India

 newbirth.child@gmail.com

2
 Director, LBRCE, Vijayawada, A.P, India

director@lbrce.ac.in

3
 Professor in School of IT, JNT University, Hyderabad, A.P,India

govardhan_cse@yahoo.co.in

Abstract— Many existing data mining (DM) tasks can be

proficient effectively only in a distributed condition. The ground

of distributed data mining (DDM) has therefore gained growing

weightage in the preceding decades. The Apriori algorithm (AA)
has appeared as one of the greatest Association Rule mining

(ARM) algorithms. Ii also provides the foundation algorithm in

majority of parallel algorithms (PAs). The size and elevated
dimensionality of datasets characteristically existing as a key to

difficulty of AR finding, makes it perfect difficulty for solving on

numerous processors in parallel. The main causes are the

computer memory and central processing unit pace constraints
looked by single workstations. This paper is based on an

Optimized Distributed AR mining algorithm for biologically

distributed information is used in similar and distributed

surroundings so that it decreases communication costs.

Keywords— Association rules (ARs), Apriori algorithm (AA),

distributed data mining (DDM), XML data, Parallel

I. INTRODUCTION

ARM has turn out to be one of the hub DM tasks

and has attracted marvelous interest among DM
investigators. ARM is an unsupervised DM method which

works on variable length data, and produces understandable
results. There are two foremost approaches for utilizing
numerous workstations that have appeared in distributed
computer memory in which each CPU has a confidential
memory; and public memory in which all CPUs access

universal memory [3, 4]. Collective memory planning has
many gorgeous assets. Each CPU has straight and identical
right to use memory in the computer system. Equivalent
applications are easy to execute on such a distributed system.

In allocated memory design each CPU has its own restricted
memory that can simply right to use directly by that CPU
[10]. For a CPU

to have contact with facts in the restricted memory of another
CPU a replica of the preferred data ingredient must be sent
from one CPU to the other throughout message passing.

XML information is used with the optimized distributed
association rule mining (ODAM) algorithm. A similar
application could be divided into numeral of jobs and
implemented in parallel on different CPUs in the system [9].
Though the performance of a similar function on a distributed

system is mainly dependent on the distribution of the jobs
contains the application onto the obtainable CPUs in the
system.

Modern associations are biologically dispersed.
Classically, each location locally stores its ever growing
amount of every day data. Using centralized DM to find out
useful patterns in such institutions’ data isn't always
practicable because integration of data sets from dissimilar
locations into a centralized location earns enormous
communication system costs. Information from these
institutions’ is not only spread to a variety of sites but also
vertically incoherent, making it complex if not unfeasible to
merge them in an essential site. Distributed DM therefore
emerged as vigorous subarea of DM investigation. In this
paper an ODAM Algorithm is used for executing the mining
procedure.

II. ASSOCIATION RULE MINING ALGORITHMS

An AR is a rule which implies certain association
relationships among a set of objects in a database. Given a set
of transactions, where each transaction is a set of items, an
AR is an expression of the form X Y, where X and Y are sets
of items. The intuitive meaning of such a rule is that
transactions of the database which contain X tend to contain
Y [1].

mailto:newbirth.child@gmail.com
mailto:director@lbrce.ac.in
mailto:govardhan_cse@yahoo.co.in
Aspiring Me
Typewritten text
Venkata et al. / Journal of Computing Technologies Vol 2, Issu 7 ISSN 2278 – 3814

Aspiring Me
Typewritten text
23

Aspiring Me
Typewritten text
© 2013 JCT JOURNALS. ALL RIGHTS RESERVED

A) Apriori Algorithm

An AR mining algorithm, Apriori has been

developed for rule mining in large transaction databases by
IBM's Quest project team. An itemset is a non-empty set of
items.

They have decomposed the difficulty of mining ARs into two

parts

 Find all combinations of items that have transaction

support above minimum support. Call those

combinations frequent item sets.

 Use the frequent item sets to generate the desired

rules. The general idea is that if, say, ABCD and AB
are frequent item sets, then we can determine if the
rule EF GH holds by computing the ratio r =
support(EFGH)/support(EF). The rule holds only if r
>= minimum confidence. Note that the rule will
have minimum support because EFGH is frequent.
The algorithm is highly scalable [7]. The AA used
in Quest for finding all frequent item sets is given
below.

B) Pseudo code

 Apriori: Finds frequent item sets using an iterative

level-wise approach based on candidate generation

1. In the first iteration of the algorithm, each item is a

member of the set of candidate 1-item sets, C1. The

algorithm simply scans all of the transactions in order to

count the number of occurrences of each item.

2. Suppose that the minimum transaction support count

required is two. The set of frequent 1-item sets, L1, can then

be determined.

3. To discover the set of frequent 2-itemsets, L1, the

algorithm uses L1*L2 to generate a candidate set of 2-item

sets.

4. Next, the transactions in D are scanned and the support

count of each candidate item set in C2 is accumulated.

5. The set of frequent 2-itemsets, L2, is then determined,

consisting of those candidate 2-itemsets in C2 having

minimum support.

6. The generation of the set of candidate 3-itemsets,

C3=L2*L2.

7. The transaction in D are scanned in order to determine

L3, consisting of those candidate 3-itemsets in C3 having

minimum support.

8. The algorithm uses L3*L3 to generate a candidate set of

4-itemsets, C4.

It makes numerous passes over the database. In the

first pass, the algorithm simply counts item occurrences to
determine the frequent 1-itemsets. A succeeding pass, say
pass k, consists of two phases. First, the frequent item sets Lk-

1 found in the (k-1)
th

 pass are used to produce the candidate
item sets Ck, using the apriori-gen() function. This function
first joins Lk-1 with Lk-1, the joining condition being that the
lexicographically ordered first k-2 items are the same. Next,
it deletes all those item sets from the join result that have
some (k-1)-subset that is not in Lk-1 yielding Ck. The
algorithm now scans the database. For each transaction, it
determines which of the candidates in Ck are contained in the
transaction using a hash-tree data structure and increments
the count of those candidates [8], at the end of the pass, Ck is
examined to determine which of the candidates are frequent,
yielding Lk. The algorithm terminates when Lk becomes
empty.

III. OPTIMIZED DISTRIBUTED MINING

ALGORITHM

The presentation of Apriori ARM algorithms degrades

for diverse reasons. It requires n number of database scans to
generate a frequent n-itemset. Furthermore, it doesn't
distinguish transactions in the data set with identical item sets
if that data set is not loaded into the main memory.
Therefore, it unnecessarily occupies resources for repeatedly
generating item sets from such identical transactions. For
example, if a data set has 10 identical transactions, the AA
not only specifies the same candidate item sets 10 times but
also updates the support counts for those candidate item sets
10 times for each iteration.

Moreover, directly loading a raw data set into the main

memory won't find an important number of identical
transactions because each transaction of a raw data set
contains both frequent and infrequent items. To conquer
these troubles, candidate support counts can’t be supported
from the raw data set after the first pass. This technique not
only reduces the average transaction length but also reduces
the data set size significantly, so we can accumulate more
transactions in the main memory. The number of items in the
data set might be large, but only a few will satisfy the support
threshold (TH).

Consider the sample data set in Figure 1a. The data

set is loaded into the main memory, and then only one

identical transaction (EFGH) is found, as Figure 1b shows.

However, if the data set is loaded into the main memory

after eliminating rare items from every transaction, more

identical transactions are found (as shown in Figure 1c).

This technique not only reduces average transaction size but

also finds more identical transactions.

Aspiring Me
Typewritten text
Venkata et al. / Journal of Computing Technologies Vol 2, Issue 7 ISSN 2278 – 3814

Aspiring Me
Typewritten text
24

Aspiring Me
Typewritten text
© 2013 JCT JOURNALS. ALL RIGHTS RESERVED

Fig 1: (b) Identical transactions

 Fig 1: (a) an Example Dataset

 Fig 1: (c) Transactions after pruning infrequent items

 Transactions

No. Items

1. EFGH

2. FG

3. EF

4. EFGHI

5. EGH

6. EFI

7. GHI

8. EH

9. FGI

 10. EFGH

Transactions

No. Items

1,10 EFGH

2. FG

3. EF

4. EFGHI

5. EGH

6. EFI

7. GHI

8. EH

9. FGI

Transactions

No. Items

1,4,10 EFGH

2,9 FG

3,6 EF

5. EGH

7. GHI

8. EH

Aspiring Me
Typewritten text
Venkata et al. / Journal of Computing Technologies Vol 2, Issue 7 ISSN 2278 – 3814

Aspiring Me
Typewritten text
25

Aspiring Me
Typewritten text
© 2013 JCT JOURNALS. ALL RIGHTS RESERVED

5. PADA RULE WITH XML DATA

Parallelism is predictable to relieve current ARM
methods from sequential blockages, providing the ability to
scale to enormous datasets and improving the response time.
The parallel design space spans three main components
including the hardware platform, the kind of parallelism
broken and the load balancing strategy used. Shared memory
architecture has all the processors access common memory.
Each processor has direct and equal access to all the memory
in the system. Parallel programs are easy to execute on such a
system [2]. The data warehouse (DW) is partitioned among
‘P’ processors logically. Each processor works on its local
partition of the database but performs the same computation
of counting support. Dynamic load balancing seeks to
address this issue by balancing the load and reassigning the
loads to the lighter ones. The development of distributed rule
mining is a challenging and vital task, since it requires
knowledge of all the data stored at different locations and the
ability to combine partial results from individual databases
into a single result.

The AR from XML data with a sample XML
document is considered. For example, the set of transactions
are identified by the tag <transactions> and each transaction
in the transactions set is identified by the tag <transaction>.
The set of items in each transaction is: Transaction document
(transactions.xml) is identified by the tag <items> and an
item is identified by the tag <item>. Consider the problem of
mining all ARs among items that emerge in the transactions
document. With the understanding of traditional AR mining
is expected to obtain the large item sets document and ARs
document from the source document.

Let the minimum support (minsupp) = 35% and minimum

confidence (minconfi) = 99%.

6. PERFORMANCE ASSESSMENT

The number of messages that ODAM exchanges
among various locations to generate the globally frequent
item sets in a distributed environment, the original data set is
partitioned into five partitions. To decrease the dependency
among dissimilar partitions, each one contains only 25
percent of the original data set's transactions. So, the number
of identical transactions among different partitions is very
low. ODAM provides a proficient method for generating ARs
from different datasets, distributed among various locations.

The datasets are generated arbitrarily depending on
the number of different items, the maximum number of items
in each transaction and the number of transactions. The
performance of the XQuery implementation is dependent on

the number of large item sets found and the size of the
dataset as shown in the Fig 2.

Fig 2: Time with Minimum support

The running time for dataset-1 with minimum support
20% is much higher than the running time of dataset-2 and
dataset-3, since the number of large item sets found for
dataset-1 is about 2 times more than the other datasets. The
Response time of the parallel and distributed data mining task
on XML data is carried out by the time taken for
communication, computation cost involved [6].
Communication time is largely dependent on the DDM
operational model and the architecture of the DDM systems.
The computation time is the time to perform the mining
process on the distributed data sets.

7. CONCLUSIONS

AR mining is a vital problem of DM. It’s a new and

challenging area to perform AR mining on XML data due to
the difficulty of XML data. In our approach, numerous
problems in XML data is handled suitably to assure the
correctness of the result. The ODAM Algorithm is used for
the mining process in a parallel and distributed setting. The
response time with the communication and computation
factors are measured to achieve an improved response time.
The performance examination is done by increasing the
number of processors in a distributed environment. As the
mining process is done in parallel an optimal solution is

Aspiring Me
Typewritten text
Venkata et al. / Journal of Computing Technologies Vol 2, Issue 7 ISSN 2278 – 3814

Aspiring Me
Typewritten text
26

Aspiring Me
Typewritten text
© 2013 JCT JOURNALS. ALL RIGHTS RESERVED

obtained.

REFERENCES

[1] R. Agrawal and R. Srikant , "Fast Algorithms for Mining
 Association Rules in Large Database,"Proc. 20th Int'l
 Conf. Very Large Databases (VLDB 9 4), Morgan
 Kaufmann, 1994,pp. 407-419.
[2] R. Agrawal and J.C. Shafer, "Parallel Mining of
 Association Rules,"IEEE Tran. Know ledge and 16 IEEE
 Distributed Systems Online March 2004 Data Eng. , vol.
 8, no. 6, 1996,pp. 962-969;.
[3] D.W. Cheung , et al., "A Fast Distributed Algorithm for
 Mining Association Rules," Proc. Parallel and
 Distributed Information Systems, IEEE CS Press,
 1996, pp. 31-42;
[4] A. Savasere, E. Omiecinski, and S .B. Navathe , "An
 Efficient Algorithm for Mining Association Rules in
 Large Database,”Proc. 21st Int'l Conf. Very Large
 Databases (VLDB 94), Morgan Kaufmann, 1995, pp.
 432-444.
[5] J. Han , J. Pei, and Y. Yin , "Mining Frequent Patterns
 without Candidate Generation,"Proc. ACM SIGMOD
 Int'l. Conf. Management of Data, ACM Press, 2000,pp.
 1-12.
[6] M.J. Zaki and Y. Pin, "Introduction: Recent
 Developments in Parallel and Distributed Data
 Mining,"J. Distributed and Parallel Databases, vol. 11,
 no. 2, 2002, pp. 123-127.
[7] M.J. Zaki , "Scalable Algorithms for Association
 Mining,"IEEE Trans. Knowledge and Data Eng., vol.12
 no. 2, 2000,pp. 372-390;
[8] J.S. Park , M. Chen, and P.S. Yu , "An Effective Hash
 Based Algorithm for Mining Association Rules,"Proc.
 1995 ACM SIGMOD Int'l Conf. Management of Data,
 ACM Press, 1995, pp. 175-186.
[9] M.J. Zaki , et al., Parallel Data Mining for Association
 Rules on Shared-Memory Multiprocessors , tech. report
 TR 618, Computer Science Dept., Univ. of Rochester,
 1996.
[10] D.W. Cheung , et al., "Efficient Mining of Association
 Rules in Distributed Databases,"IEEE Trans.
 Knowledge and Data Eng., vol. 8, no. 6, 1996,pp.911-
 922;

Aspiring Me
Typewritten text
Venkata et al. / Journal of Computing Technologies Vol 2, Issue 7 ISSN 2278 – 3814

Aspiring Me
Typewritten text
© 2013 JCT JOURNALS. ALL RIGHTS RESERVED

Aspiring Me
Typewritten text
27

