
Bhuvnesh et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 4

Automatic Service Composition Using User-
Centric Approach in Cloud Computing

Bhuvnesh Kumar1, Hardeep Singh2, Nancy3, Navroop Kaur4

Department of Computer Science and Engineering
Guru Nanak Dev University, Amritsar (Punjab), India.

Email: 1bhuvnesh.gsp@gmail.com
2hardeep_gndu@rediffmail.com
3nancy.k1307034@yahoo.co.in

4navonline@yahoo.co.in

Abstract—Service oriented architecture emerging as
important service of cloud computing. It is a producer-
centric approach in which the service provider published
their services and service consumers must search available
services to compose their applications. In the proposed work
we follow User-Centric SOA (that allows end users to
compose applications) in which some parameters are added
like total number of requested services, number of new
services requested, ratio between them, efficiency of
resources and determine the formation time (the sum total
of requested time, discovery time and composition time).

Keywords— Service-Oriented Architecture, User-centric
Approach, Cloud computing.

I. INTRODUCTION

The basic principle of cloud computing is to distribute
the computing tasks to many distributed computers, not
local computer or remote servers. The services of cloud
computing are broadly divided into three categories:
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS). Infrastructure-
as-a-Service is the delivery of huge computing resources
such as the capacity of processing, storage and network.
Platform-as-a-Service generally abstracts the
infrastructures and supports a set of application program
interface to cloud applications. Software-as-a-Service
aims at replacing the applications running on PC.

From all the layers of cloud computing shown in the
figure1, this paper focuses on the third layer (Component
as a service, SOA). The SOA is producer-centric because
service providers publish their services and service
consumers must search available services to compose
their applications. The Service-Oriented Architecture
(SOA) provides a set of principles to create service
oriented systems, by defining how services can be
created, composed, published, discovered and invoked.
CCSOA focuses on consumers’ publishing the services
they need and even the applications they need. The
service providers must produce services that are in need.
This new paradigm extends the design and code sharing,
and thus further improves the software productivity.
User-centric service oriented architecture (UCSOA) that
allows end users to compose applications. UCSOA is an
extension of consumer-centric service-oriented
architecture (CCSOA), which is an extension of
conventional SOA.

Cloud Clients

Presentation Layer

Example: browsers, mobile devices

Cloud Applications

Software as a Service

Example: Google docs or calendar

Cloud Services

Components as a Service

Example: SOA via Web Service standards

Cloud Infrastructure

Distributed Multi-site Physical Infrastructure

Cloud Platform Cloud Storage

Platform as a Service Storage as a Service

Example: web server, Note: formerly

app server utility computing

Figure1: Layer’s of Cloud Computing

Automatic service composition is the automatically
composing services that satisfy a given service request

Fig. 2. Service-Oriented Architecture elements and interactions

Bhuvnesh et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 5

from an end-user or service developer.
Services are composed in terms of already available
atomic services, which are orchestrated in the service
composition. Service requests are used for service
discovery, matching and composition.

Service requests allow end-users or service developers
to specify what they want the service to do for them,
abstracting from the way this service is implemented,
possibly in terms of a composition of atomic services.

The previous works on Service Composition discussed
how to create, composed, publish and discover the
services requested by the end users. This paper adds some
more parameters to the automatic service composition
such as to calculate the total number of requested
services, number of new services requested, ratio
between them, efficiency of resources and to determine
the formation time (the sum total of requested time,
discovery time and composition time).

II. RELATED WORK

Many service composition approaches and solutions
have been proposed and developed in recent years.
However, more effort has to be spent on their evaluation
and comparison.

W.T. Tsai, et.al. [2] introduced a Consumer-Centric
Service-Oriented Architecture (CCSOA) paradigm over
Producer-Centric Service-Oriented architecture. This new
paradigm extends the design and code sharing, and thus
further improves the software productivity.

Mark Chang, et.al. [3] proposed the paper which
introduces a new user-centric service oriented
architecture (UCSOA) that allows end users to compose
applications. UCSOA is an extension of consumer-centric
service-oriented architecture (CCSOA).

Xuanzhe Liu, et.al. [1] proposed some user-centric
mining algorithms which uses Direct Acyclic Graph to
built up potential composition opportunities. This
approach allowed users to achieve service composition in
a heuristic manner.

Eduardo Silva, et.al. [5][6][7][8] proposed the paper
which address the challenge of performing dynamic
service composition. This paper defines a life-cycle for
dynamic service composition, which defines the required
phases and stakeholders. In this paper authors present our
prototype in which the different phases of the dynamic
service composition lifecycle are being implemented.
They also developed a framework named DynamiCoS,
which aims at supporting the different phases required to
provide end-users with automatic service discovery,
selection and composition process and also present the
developed prototype and its evaluation.

Eduardo Silva, Lu´ıs Ferreira Pires, Marten van
Sinderen [9] proposed the paper which present
framework for semantics-based service composition
approaches which use a collection of existing services,
and define a set of evaluation metrics, confusion matrix-
based and time-based. Furthermore, we present how
composition evaluation scenarios are generated from the

collection of services and specify the strategy to be used
in the evaluation process.

Eduardo Gon, et.al. [10] proposed the paper which
defines the DynamiCoS framework based on a service
composition life-cycle. Semantic services are used in our
framework to enable reasoning on the service requests
issued by end users, making it possible to automate
service discovery, selection and composition. This paper
also shows the benefits of semantic based frameworks for
service composition, particularly for end-users who will
be able to have more control on the service composition
process.

This paper is focused on User-centric approach for
service composition.

III. PROPOSED POLICY

Figure 3: Flowchart of service composition with some parameters

Bhuvnesh et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 6

In the proposed policy, some new are parameters are
added which calculate the total number of requested
services, number of new services requested, ratio between
them, efficiency of resources and determine the formation
time (the sum total of requested time, discovery time and
composition time).

Ratio= count1/count2

Where, count1 is number of requested new services
and count2 is number of requested services.

Formation time = Service request Time + Discovery
Time+ Composition Time.

Timer is used for calculating the formation time
through which we can calculate the efficiency of
resources.

Efficiency of the resources mostly depends upon the
formation time. If the formation time is short, then
efficiency of resources more. Otherwise, efficiency of
resources is less.

Efficiency=1 / Formation time

Efficiency means the CPU utilization, memory used
and response time of service.

IV RESULTS

A. Graph of memory used by services

B. Graph of CPU utilization of services

C. Graph of Response Time of services

D. Graph of efficiency of services

From the above graph of efficiency, if the CPU
utilization of service is more, memory used is less
and response time is small then service is more
efficient.

V CONCLUSIONS

Many works have been done on user-centric service
oriented architecture. This paper extends the previous
papers by adding some new parameters like total number
of requested services, number of new services requested,
ratio between them, efficiency of resources and determine
the formation time.

REFERENCES

1. Xuanzhe Liu, Gang Huang, Hong Mei, 2008. A User-Oriented
Approach to Automated Service Composition, School of
Electronics Engineering and Computer Science, Peking
University, DOI = 10.1109/ICWS.2008.139,773-776.

2. W.T. Tsai, Bingnan Xiao, Raymond A. Paul, Yinong Chen,
2006. Consumer-Centric Service-Oriented Architecture: A New
Approach, Arizona State University, Tempe, AZ 85287-8809,
USA Department of Defense, Washington, USA, 2006.

3. Mark Chang, Jackson He, W.T. Tsai, Bingnan Xiao, Yinong
Chen,” UCSOA: User-Centric Service-Oriented
Architecture”Intel Incorporation, USA ,Arizona State University,
Tempe, AZ 85287-8809, USA 2006 IEEE.

4. J. Eduardo Silva, Luís Ferreira Pires, Marten van Sinderen, 2008.
An Algorithm for Automatic Service Composition, Centre for
Telematics and Information Technology, University of Twente,
Enschede, the Netherlands,2008.

5. Eduardo Silva, Jorge Mart´ınez L´opez, Lu´ıs Ferreira Pires,
Marten van Sinderen, 2008. Defining and Prototyping a Life-
cycle for Dynamic Service Composition, Centre for Telematics
and Information Technology University of Twente, The
Netherlands,2008.

Bhuvnesh et al. / Journal of Computing Technologies Vol 2, Issue 6 ISSN 2278 – 3814

© 2013 JCT JOURNALS. ALL RIGHTS RESERVED 7

6. Eduardo Silva, Lu´ıs Ferreira Pires, Marten van Sinderen, 2008.
Dynamic Service Composition: Why, Where and How, Centre
for Telematics and Information Technology University of
Twente, The Netherlands, 2008.

7. Eduardo Silva, Lu´ıs Ferreira Pires, Marten van Sinderen, 2009.
On the Support of Dynamic Service Composition at Runtime,
Centre for Telematics and Information Technology University of
Twente, The Netherlands, 2009.

8. Eduardo Silva, Lu´ıs Ferreira Pires, Marten van Sinderen, 2009.
Supporting Dynamic Service Composition at Runtime based on

End-user Requirements, Centre for Telematics and Information
Technology University of Twente, The Netherlands, 2009.

9. Eduardo Silva, Lu´ıs Ferreira Pires, Marten van Sinderen, 2009.
A Framework for the Evaluation of Semantics-based Service
Composition Approaches, Centre for Telematics and Information
Technology University of Twente, The Netherlands, 2009.

10. Eduardo Gon，calves da Silva, Lu´ıs Ferreira Pires, Marten van
Sinderen, 2010. Towards Runtime Discovery, Selection and
Composition of Semantic Services Centre for Telematics and
Information Technology University of Twente, The Netherlands,
March 26 , 2010.

