
Maninder Kaur et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
1

COMPARATIVE STUDY OF DIGITAL

CIRCUIT PARTITIONING ALGORITHMS

BASED ON EVOLTUNARY COMPUTING
Maninder Kaur

 #1
, Kawaljeet Singh

 *2

#1
School of Mathematics and Computer Application, Thapar University, Patiala, INDIA

1
manindersohal@thapar.edu

*2
University Computer centre, Punjabi University Patiala, INDIA

2
singhkawaljeet@rediffmail.com

Abstract--- As the evolutionary computing based approaches are

increasingly being used to solve different NP complete problems,

the development of efficient parallel algorithms for digital circuit

partitioning, circuit testing, logic minimization and simulation

etc. is currently a field of increasing research activity. In some of

these applications the circuit-partitioning problem occurs. That

implies dividing a circuit into non-overlapping sub circuits while

minimizing the number of cuts after the division and balancing

the load associated to each one. This paper describes different

evolutionary approach for solving circuit-partitioning problem

and compares their effectiveness with existing classical

approaches using benchmark circuit graphs/matrices. The

extendibility of evolutionary approaches enables users to solve

hardware/software aspects of partitioning instances and can be

practiced for real purposes in VLSI/FPGA circuit’s physical

design.

Keywords— Evolutionary Computing, VLSI Circuits, Circuit

Partitioning, Genetic Algorithm, Simulated Annealing.

I. INTRODUCTION

A variety of devices is currently available for developing

and implementing digital systems. Circuit partitioning is an

important problem in many areas of VLSI and FPGA design,

such as lay-out, placement, floor planning and routing etc. At

the layout level, partitioning is used to find strongly connected

components that can be placed together in order to minimize

the layout area and propagation delay. In the design process

with digital circuits, partitioning is used in the placement step,

which assigns each node of the circuit network to a specific

logic block in the FPGA device. Partitioning also plays an

important role in rapid prototyping with multiple FPGA

circuits. Bi partitioning of a circuit is done by dividing into

two balanced components that minimizes the number of

crossing connections [4]. This problem was shown to be NP-

complete. Because of its importance, many heuristic

algorithms have been proposed to solve the bi partitioning

problem. Efficient designing of any complex system

necessitates decomposition of the same into a set of smaller

subsystem. Subsequently, each subsystem can be designed

independently and simultaneously to speed up the design

process [5]. The process of decomposition is called

partitioning. The main aims at circuit partitioning, may be (a)

the minimization of the number of sub-circuits, (b) the

minimization of the number of interconnections between sub-

circuits, (c) the minimization of the deviation in the number of

elements (inputs, logical gates, outputs and fan out points)

assigned to each partition.

II. DIGITAL CIRCUIT PARTITIONING PROBLEM

The partitioning problem is NP-complete problem this

means it is unlikely that a polynomial-time algorithm exists

for solving the problem. Therefore, one must use heuristic

techniques generating approximate solutions. Partitioning is

one of the first steps in VLSI circuit design. Partitioning has

the important responsibility since it directly affects the rest of

the steps in the process. A bad partitioning algorithm could

leave us with a very well area-balanced chip, but with terrible

wiring. We could also end up with a partition, which allows us

to have the least complex wiring, but with the partitions being

uneven in size. These results are undesirable, thus various

partitioning algorithms have been built to create good

partitions. Universally, all partitioning algorithms are

expected to give good partitions, which we define as

maintaining area constraints and minimizing wiring

complexity. In fact, the perfect partition could always be

found with any graph given an infinite amount of time. Time

is limited, however; thus the algorithms must arrive at a

reasonably good solution in polynomial time

III. CIRCUIT PARTITIONING ALGORITHMS BASED ON

EVOLUTIONARY COMPUTING

A number of heuristic techniques are there to generate

approximate solutions to the partitioning problem. This

section discusses various evolutionary algorithms to solve

circuit partitioning problem.

A. Divide and Conquer

The divide-and-conquer paradigm is widely used for

solving large problems to reduce their complexity. The

problem is recursively (top-down) partitioned into smaller sub

problems. This process continues until sub problems are small

enough to be solved directly. The solutions are combined

hierarchically which yields, in general, suboptimal solutions

Maninder Kaur et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
2

on the next higher level. A famous example for this successful

solution strategy is the min-cut placement method in layout

synthesis. Partitioning is applied recursively to the circuit’s

net list thereby generating a hierarchical neighbourhood

(slicing) structure [6]. This structure is then interpreted as a

placement for chip assembly. In addition to reducing problem

size, solution quality is improved and heavy wiring congestion

avoided by minimizing the number of wires cut by the

partition.

B. The Kernighan-Lin Algorithm

The most basic approaches to the partitioning problem treat

the circuit as a graph. This is true for the first, and most

famous partitioning algorithm, called the Kernighan-Lin

algorithm. This algorithm was originally designed for graph

partitioning rather than circuit partitioning, so to apply the

algorithm, one must first convert the circuit into a graph. The

Kernighan-Lin algorithm works as follows. The initial

partition is generated at random. Then the two sub circuits S1

and S2 are created. If the circuit has n gates, the first n/2 are

assigned to S1, and the rest are assigned to S2. Because the

gates in a circuit description appear in what is essentially a

random order, the initial partition appears to be random [8].

The technique for generating new solutions from old solutions

is to select a subset of gates from S1 and a subset of gates

from S2 and swap them. To maintain acceptability, we always

select two subsets of the same size.

C. Genetic Algorithms

GA was developed by John Holland (Holland, 1975) and

since then has been used in various fields of engineering. GA

has been used quite successfully for combinatorial problems

that are NP-complete. More recently GA has been used for

solving some VLSI problems. A genetic algorithm is a

randomized parallel search method modelled on natural

selection and genetics. In contrast to more standards search

algorithms, GA bases their progress on the performance of a

population of candidate solutions, rather than on a single

candidate solution. The motivation behind this is that by

simultaneously searching many areas of the design space the

risk of getting stuck at local optima is greatly reduced. GA are

probabilistic in nature and start off with a population of

randomly generated candidates and evolve toward better

solutions by applying genetic operators, modelled on the

natural genetic process. For solving any problem, a population

of possible solutions is maintained by the GA and this

population undergoes evolution. In each generation relatively

good solutions survive and reproduce while bad solutions tend

to die off, and are replaced by the offspring of the good, which

are also likely to be good.

D. Simulated Annealing

Simulated Annealing (Kirkpatrick et al., 1983) belongs to

the class of non-deterministic algorithms. Kirkpatrik, Gelatt

and Vecchi first introduced this heuristic in 1983. Simulated

Annealing (SA) is a general iterative improvement algorithm

that can be used for many different purposes. In partitioning,

SA starts with a random partition. A new state is computed by

selecting a gate at random from each of the two subsets, and

swapping them. As before, the swap remains tentative, until

the quality of the new partitioning is computed. The number

of nets cut is the measure of goodness. If the new state is

better than the old state, it is accepted and the swap is made

permanent. If the new state is worse than the old state, it might

be accepted and it might not. The SA algorithm operates in a

series of distinct phases called temperatures. An actual

temperature value is assigned to each phase. The algorithm

begins with temperature set to a high value, and proceeds to

lower and lower temperatures. A predetermined number of

moves are attempted at each temperature. When a bad move is

attempted, the algorithm computes an acceptance value that is

based on temperature and on the badness of the solution. This

acceptance value is compared to a random number to

determine whether the move will be accepted. The random

number is used to guarantee that there is always a non-zero

probability that any bad move will be accepted. The higher the

temperature, the more likely it is that a particular bad move

will be accepted, and at a given temperature, the worse the

move, the less likely it is to be accepted.

E. The Tabu Search

The Tabu Search technique was originally proposed in

1990 by Glover as an optimization tool to solve nonlinear

covering problems. Tabu Search has recently been applied to

problems such as integer programming, scheduling, circuit

partitioning and graph coloring. In general terms, Tabu Search

is an iterative improvement procedure that starts from some

initial feasible solution (i.e., assignment of cells to blocks for

the partitioning problem) and attempts to determine a better

solution in the manner of a steepest descent algorithm.

However, Tabu Search is characterized by an ability to escape

local optima which usually cause simple descent algorithms to

terminate by using a short term memory of recent solutions

[14]. Tabu Search permits back-tracking to previous solutions,

which may ultimately lead, via a different direction, to

partitions with fewer cut nets. A Tabu Search implementation

for circuit partitioning requires an initial feasible solution

(partition), an associated cost in this case, the net cut, a list of

Tabu solutions and a maximum number of moves.

F. Ant Colony Method

ACO is a novel population-based metaheuristic framework

for solving discrete optimization problems. It is based on

indirect communication among individuals of a colony of

agents, called ants, mediated by trails of a chemical substance

pheromone used by real ants for communication. It is inspired

by the behaviour of real ant colonies, in particular, by their

foraging behaviour and their communication through

pheromone trails. Pheromone trails are a kind of distributed

numeric information modified by ants to reflect their

experience accumulated while solving a particular problem.

Typically, solution components which are part of better

solutions or are used by many ants will receive a larger

Maninder Kaur et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
3

amount of pheromone and, hence, will more likely be used by

the ants in future iterations of the algorithm. The collective

behaviour is a form of autocatalytic behaviour. The process is

thus characterized by a positive feedback loop, where

probability with which ant chooses a solution component

increases with the number of ants that previously chose the

same solution component.

G. Memetics Algorithm

MA Algorithm blends different search strategies in a

combined algorithmic approach. Like Evaluation Algorithms.

MAs are population based metaheuristics. This means that

MAs maintain a population of solutions for the problem at

hand. It is assumed that both repairing and extension

processes can be performed faster, as to justify including them

in the population. In the context of MAs, the denomination

agent representing a processing unit that can hold multiple

solutions, and has problem-domain methods that helps to

improve them if required. Each individual/agent represents a

tentative solution/method for the problem under consideration.

When the agents adapt their methods we call the resulting

strategy an adaptive memetic algorithm [12]. Adaptation may

include a modification of the data as in due to the agents

interactions, solutions are subject to processes of competition

and mutual cooperation.

H. DNA Based Algorithm

To solve the instance of Partitioning problem with G= (V,

E) (|v| = n) start with 2n identical single stranded DNA

memory strands each with 2n bit regions. The first n bit

regions will represent the presence/absence of vertex in the

first partition and the rest n bit regions will represent the

presence/absence of an edge crossing the partition. The

method uses the Sticker model of DNA computation. The

main idea of this method is grouping the strands according to

the output value to be set for a particular bit, and then set the

output value as 0 or 1 accordingly. This process is repeated

until all the digits of output value are stored. The result tubes

are the tubes, which contain the result strands after completion

of the annealing process with stickers [15]. To perform a

specific operation on given input and operand, first a

particular tube is selected from the result tubes corresponding

to the operation. Then a particular memory complex is

selected from that tube corresponding to the input and operand

value under consideration

IV. PROBLEM FORMULATION

Let us take the VLSI partitioning problem for the

demonstration of the proposed approach. This problem can be

expressed more naturally in graph theoretic terms. A graph

G=(V, E) representing a partitioning problem can be

constructed as follows. Let V={v1, v2…vn} be a set of vertices

and E={e1, e2…em} be a set of edges. Each vertex represents a

component. There is edge joining the vertices whenever the

components corresponding to these vertices are to be

connected. Thus, each edge is a subset of the vertex set i.e., ei

 V, i=1,2…m. Let edge represents a function which when

called with first vertex of edge, returns the second vertex of

edge. The modelling of partitioning problem into graphs

allows us to represent the circuit-partitioning problem

completely as a graph-partitioning problem. The partitioning

problem is to partition V into V1, V2…Vk where

V Vj = , ij

 Vi = V

Theses partitions can be obtained by first efficiently

partitioning the graph into two parts and then recursively

applying the same approach. Partition is also referred to as a

cut. The cost of partition is called the cutsize, which is the

number of edges crossing the cut [8]. The constraints and the

objective functions for the partitioning algorithms vary for

each level of partitioning and each of the different design

styles used. However, at the chip level, the partitioning

algorithms usually have interconnections between partitions as

an objective function.

The number of interconnections at any level of partitioning

has to be minimized. Reducing the interconnections not only

reduces the delay but also reduces the interface between the

partitions making it easier for independent design and

fabrication. A large number of interconnections increase the

design area as well as complicates the task of placement and

routing algorithms. Minimization of the number of

interconnections between partitions is called the mincut

problem. The minimization of the cut is a very important

objective function for partitioning algorithms for any level or

any style of design. This function can be stated as

ij

k

j

k

i

c
 11

 , (ij) is minimized cij

The represent the crossing edge from node i to node j

crossing a partition. The mincut problem is NP complete, it

follows that general partitioning problem is also NP complete [4].

V. SIMULATION RESULTS

The different criteria used in this analysis are the following:

- Min cut;

- CPU Efficiency Time;

- Load Balancing.

The simulation has been performed by taking the different

sets of graphs for different values of Benchmark circuits as

shown in Table 1. The table shows the circuit names with

having different Inputs and Outputs. The total gates in each

Benchmark circuit are shown. The average simulation time to

find the number of Input and Output is also shown in Table.

The corresponding comparison has been made between

Divide and Conquer, Kernighan-Lin, Simulated Annealing,

Genetic Algorithm, Ant Colony Algorithm, Memetics

Algorithm and DNA based.

Maninder Kaur et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
4

TA BLE I
THE BENCHMARK CIRCUITS FOR COMBINATIONAL DIGITAL CIRCUITS

Table II compares the results of evolutionary algorithms,

for the ISCAS-85 circuits. In comparison with the

computations are carried out with parameters like cut size,

CPU Efficiency and Load Balancing. The new evolutionary

algorithm is showing the good results. The effectiveness of the

algorithm is demonstrated using the simulation setup with the

help of Chaco 2.0 Algorithm.

To demonstrate the effectiveness of the approach another

set of simulation results were taken for some standard

benchmark circuit’s c432 and c3540 in various domains

shown in Figure 1 and Figure 2. DNA based approach

produced a smaller edge-cut for each graph and was much

faster than the other approaches on the average (in terms of

number of iterations). The Figure 3 and Figure 4 shows the

CPU Efficiency and Load balancing which in turn is used for

Fan In and Fan Out of the other circuits for partitioning.

Fig. 3 CPU Efficiency using different Evolutionary Algorithms on

Benchmark circuits.

Fig. 4 CPU Efficiency using different Evolutionary Algorithms on

Benchmark circuits

The outcomes clearly show that the new evolutionary

approaches like DNA based approach is much faster and

generates partitions with a smaller edge-cut for all graphs.

Thus DNA based approach is much more effective, especially

for large values of n as it always take less than n
2
 iterations to

find the required partition with a better edge cuts.

VI. CONCLUSIONS AND FUTURE SCOPE

The results show that the new evolutionary algorithms are

able to partition the circuit graph taking less no. of iterations

as compared to other available approaches. The new

approaches might be found useful in VLSI circuit partitioning,

circuit testing, logic minimization and simulation etc. In all of

these applications the circuit-partitioning problem occurs. The

graph-partitioning problem is an important component for

mesh partitioning in the domain-decomposition method. The

simulation results show that larger graphs, which are often

encountered in mesh partitioning, we had to use a multilevel

method to produce results that were competitive with the

results given by other algorithms. There is a wide range of

possibilities to be considered in the future. One of the most

appealing is a merger of the non conventional computing

methods like DNA approach with some other method through

daemon actions and parallel implementation using parallelism.

Furthermore, sequential circuits can be used to show the

simulation results of these algorithms.

0

20

40

60

80

100

120

140

160

180

200

KL GA SA TS ACO MA DNA

Evolutionary Algorithms

C
P

U
 E

ff
ic

ie
n

c
y
 (

s
e
c
) c432

c499

c880

c1355

c1908

c3540

c6288

0

20

40

60

80

100

120

KL GA SA TS ACO MA DNA

Evolutionary Algorithms

L
o

a
d

 B
a
la

n
c
in

g

c432

c499

c880

c1355

c1908

c3540

c6288

Maninder Kaur et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
5

TABLE II
MIN CUT, CPU UTILIZATION AND LOAD BALANCING ON DIFFERENT BENCHMARK CIRCUITS

FIG. 1 AND FIG 2 SHOWS MINCUTS ON DIFFERENT ALGORITHMS WITH

BENCHMARK CIRCUITS C432 AND C3540

REFERENCES

Trifunovi´c and W.J. Knottenbelt. (2004) “Towards a parallel disk-based

algorithm for multilevel k-way hypergraph partitioning.” In Proc. 5th

Workshop on Parallel and Distributed Scientific and Engineering Computing,

Santa Fe, NM, USA

Trifunovic and W. J. Knottenbelt. (2004) “.Parkway 2.0: A parallel

multilevel hypergraph partitioning tool” In Proc. 19th International
Symposium on Computer and Information Sciences (ISCIS 2004), volume

3280 of LNCS, pages 789–800. Springer
C.A.C. Coello, G.T.Pulido and M.S. Lechuga (2004)., “Handling multiple

objectives with particle swarm optimization”, IEEE Trans. on Evolutionary

Computation, Vol. 8, Issue 3, pp. 256-279.
J. Alpert and A. B. Kahng (1995). “Recent directions in netlist partitioning:

A survey”. Integration: The VLSI Journal, (19):1-81

J. Alpert, A. E. Caldwell, A. B. Kahng, and I. L. Markov, (2000),
“Hypergraph Partitioning with Fixed Vertices”, IEEE Transactions on

Computer–Aided Design of Circuits and Systems, 19 pp. 267–272.

Rayside, S. Reuss, E. Hedges and K. Kontogiannis (2000). “The effect of
call graph construction algorithms for object-oriented programs on automatic

clustering.” In Proc. of 8th International Workshop on Program

Comprehension, pages 191-200, IEEE.

Garey, M.R.,Johnson, D.S.,(1979) “Computers and Interactability” A

Guide to the Theory of NP-Completeness, W.H. Freeman & Company. San
Francisco.

Holland, J.,(1975).”Adaptation in Natural and Artificial Systems”. Ann

Arbor: University of Michigan Press.
Kernighan, B.W., Lin S.,(1970).” An Efficient Heuristic Procedure for

Partitioning Graphs", The Bell Sys. Tech. Journal, pp 291-307.

Kirkpatrick, S., Gelatt, C.D., Jr, Vecchi, M.P.,(1983). “Optimization by

Simulated Annealing. Science”, Vol. 220, pp. 671-680.

Kumar, V., Grama, A., Gupta, A., Karypis, G.,(1994). “Introduction to

Parallel Computing. Design and analysis of algorithms”, The
Benjamin/Cummings

Publishing company.

Lipton, R., (1996). “Speeding Up Computations via Molecular Biology”.
1st DIMACS workshop on DNA based computers. Princeton. In DIMACS

series. vol.27, pp 67-74.

N. Krasnogor and J.E. Smith (2005). “A tutorial for competent memetic
algorithms: Model, taxonomy and design issues”. IEEE Transactions on

Evolutionary Algorithms, 9(5):474–488,

R. Koschke and T. Eisenbarth. (2000) “.A framework for experimental
evaluation of clustering techniques”. In Proc. of 8th International Workshop

on Program Comprehension, pages 201-210, IEEE.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N., Goodman, M.,
Rothemund, P., Adleman, L., (1998). “A Sticker-Based Model for DNA

Computation”. Journal of Computational Biology, 5(4) pp 615-629.

