
Shivani Jain et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

Volume 1

Issue 2, June 2012

JOURNAL OF COMPUTING TECHNOLOGIES

ISSN 2278 – 3814

A Relative Study of Pattern Matching Algorithms

Shivani Jain
#1

, Dr. A.L.Nersimha Rao
*2

, Dr. Pankaj Agarwal
#3

#
1 IT ,

#
2 IT ,

#
3 CSE

, MTU, MTU, MTU

Vidya College of Engineering, Meerut, UP, India

Galgotia Engineering College, Greater Noida, UP India

IMS, Gaziabad, UP, India
1shivanij_1110@yahoo.com

2pankaj7877@gmail.com
3dr.rao@aol.com

Abstract— The arrival of computers has made the everyday

use of pattern-matching in various applications such as text

editing, DNA sequence analysis, word processors, web search

engine, computational molecular biology and natural language

processing etc. Since this has also moved the development of

many algorithms in the field of pattern matching in a string. As

with most algorithms, the main considerations for string

searching are speed and efficiency. There are number of string

searching algorithms in existence world, in this paper we will

focus on various already exist exact string matching and

approximate string matching algorithms such as Knuth-Morris-

Pratt, Boyer-Moore, Quick-search, Horspool, Shift Or, Wu-

Manber Algorithms.

Keywords— Pattern matching, Exact String Matching,

Approximate String Matching.

I. INTRODUCTION

From many years, pattern-matching has been usually used in

various computer applications, for example, in editors,

retrieval of in sequence from text, image, or sound, and

searching protein sequence patterns in DNA protein sequence

databases. In the present day, pattern-matching algorithms

match the pattern exactly or approximately within the text. An

exact pattern-matching is to find all the occurrences of a

particular pattern (P) p1 p2... pm) of m-characters in a text (T)

t1 t2 ... tn) of n-characters which are put up over a finite set of

characters of an alphabet set.String matching or searching

algorithms try to find places where one or several patterns are

found within a larger text [1]. When the pattern is a single

string the problem is known as string matching, locate all

occurrences of a pattern P of length m in a text T of length n.

Approximate string matching consists in finding all

approximate occurrences of pattern P in text T [2].

Approximate String matching is one of the main problems in

classical string algorithms, with applications to text searching,

biological applications, pattern recognition etc [3].An

algorithm that returns near-optimal solutions is called an

approximation algorithm. The approximate string matching

problem is to find all of those positions in a given text which

are the left endpoints of substrings. The problem of

approximate string matching is typically divided into two sub-

problems: finding approximate substring matches inside a

given string and finding dictionary string that match the

pattern approximately. The string matching problem is to find

out a pattern in a text (another string). In approximation string

matching algorithm substring is matched approximately with

the large string.

The problem can be formally stated as follows: given a large

text of length n, short pattern of length m, and a maximal

number of errors allowed k, finds all text positions that match

the pattern with up to k errors. The allowed errors are

characters from an alphabet.Approximate string matching is a

challenging problem in Computer Science and requiring a

mailto:1shivanij_1110@yahoo.com
mailto:2pankaj7877@gmail.com
mailto:rao@aol.com

Shivani Jain et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

large amount of computational resources. It has different areas

such as computational biology, text processing, pattern

recognition and signal processing. For these reasons, fast

practical algorithms for approximate string matching are in

high demand.

1.1. DEFINITION OF STRING MATCHING PROBLEM

Given: Two strings T[1..n] and P[1..m] over alphabet .

Want to find all occurrences of P[1..m] ―the pattern‖ in T[1..n]
―the text

Example:  = {a, b, c}

text T

a

b

c

a

b

A

a

b

c

a

a

b

a

c

pattern P

a

b

a

a

Terminology:

 P occurs with shift s.

 P occurs beginning at position s+1.

 s is a valid shift.

Goal: Find all valid shifts.

1.2. APPLICATIONS OF EXACT STRING MATCHING

OR APPROXIMATE STRING MATCHING

ALGORITHMS

 Text editors

 Parsers.

 Spam filters.

 Digital libraries.

 Screen scrapers.

 Word processors.

 Web search engines.

 Natural language processing.

 Computational molecular biology.

 Feature detection in digitized images etc.

2. STUDY ON EXISTING STRING MATCHING ALGORITHMS

Algorithms for pattern matching depend on the type of output.

In this paper we focus on the various exact and approximate

pattern matching algorithm.

2.1. STRING MATCHING ALGORITHM

The object of string searching is to find the location of a

specific text pattern within a larger body of text (e.g., a

sentence, a paragraph, a book, etc.). In string matching

algorithms, it is required to find the occurrences of a pattern in

a text. These algorithms find applications in text processing,

text-editing, computer security, and DNA sequence analysis.

1) Naive (Brute-Force) Algorithm: The naïve approach

simply test all the possible placement of

Pattern P[1 . . m] relative to text T[1 . . n]. Specifically,

there is shift s = 0, 1, . . . , n - m, successively and for

each shift, s. Compare T[s +1 . . s + m] to P[1 . . m] [4].

The algorithm can be designed to stop on either the first

occurrence of the pattern, or upon reaching the end of the

text. The main features of this algorithm it is easy but

slow, there is no preprocessing phase, it shift only by 1

position to the right, there is only constant extra space

needed, and comparisons can be done in any order and

mn expected text characters comparisons.

In this algorithm pattern compares to each substring of

text of length M. For example, M=5. The worst-case

complexity of this algorithm is Θ(mn), where m denotes

the length of pattern and n denotes the length of text. The

total number of comparisons: M (N-M+1), hence worst

case time complexity is Ο(MN).

2) Rabin-Karp Algorithm: The Rabin-Karp string searching

algorithm calculates a hash value for the pattern, and for

each M-character subsequence of text to be compared. If

the hash values are unequal, the algorithm will calculate

the hash value for next M-character sequence. If the hash

values are equal, the algorithm will do a Brute Force

comparison between the pattern and the M-character

sequence. In this way, there is only one comparison per

text subsequence, and Brute Force is only needed when

hash values match.

If a satisfactorily large prime number is used for the hash

function, the hashed values of two different patterns will

usually be distinct. If this is the case, searching takes

O(N) time, where N is the number of characters in the

larger body of text. It is always possible to construct a

scenario with a worst case complexity of O(MN). This,

however, is likely to happen only if the prime number

used for hashing is small.

Shivani Jain et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

This is a simple randomized algorithm that tends to run

in linear time in most scenarios of practical interest. The

main features are using hashing function, preprocessing

phase, constant space and good for multiple patterns x

being used. The worst case running time is as bad as that

of the naive algorithm [5].

3) Finite automata string matching algorithm: A finite state

machine also known as a deterministic finite automaton

or DFA, is the set strings matching some pattern).The

main features are Building the minimal deterministic

finite automaton (DFA) accepting strings from the

language L = ∑*x, L is the set of all strings of characters

from ∑ ending with the pattern x, Time complexity O(n)

of the search in a string y of size n if the DFA is stored in

a direct access table and Most suitable for searching

within many different strings y for same given pattern x.

4) Knuth-Morris-Pratt Algorithm: The algorithm was

invented in 1977 by Knuth and Pratt and independently

by Morris, but the three published it jointly. Searches for

occurrences of a pattern x within a main text string y by

employing the simple observation: after a mismatch, the

word itself allows us to determine where to begin the

next match to bypass re-examination of previously

matched characters.

The Knuth-Morris-Pratt string searching algorithm (or

KMP algorithm) searches for occurrences of a ―word‖ W

within a main ―text string‖ S by employing the

observation that when a mismatch occurs, the word itself

embodies sufficient information to determine where the

next match could begin, thus bypassing re-examination

of previously matched characters. The two portions of

the algorithm (Efficiency of search algorithm and

efficiency of the table-building algorithm) have,

respectively, complexities of O(k) and O(n), the

complexity of the overall algorithm is O(n + k).

 Knuth-Morris-Pratt’s algorithm compares the pattern

to the text in left-to-right, but shifts the pattern more

intelligently than the brute-force algorithm.

 Knuth-Morris-Pratt’s algorithm preprocesses the

pattern to find matches of prefixes of the pattern

with the pattern itself

5) Boyer-Moore Algorithm: The Boyer-Moore-Horspool

algorithm is an algorithm for finding substrings in strings.

It was published by Nigel Horspool in 1980. It is a

simplification of the Boyer-Moore string algorithm

which is related to the Knuth-Morris-Pratt algorithm.

The algorithm trades space for time in order to obtain an

average-case complexity of O(n) on random text,

although it has O(MN) in the worst case. The length of

the pattern is M and the length of the search string is N.

the best case is the same as for the Boyer-Moore string

search algorithm in big O notation.

Theoretically, the Boyer-Moore1 algorithm is one of the

efficient algorithms compared to the other algorithms

available in the literature. The algorithm preprocesses

the pattern and creates two tables, which are known as

Boyer-Moore bad character (bmBc) and Boyer-Moore

good-suffix (bmGs) tables. For each character in the

alphabet set, a bad-character table stores the shift value

based on the occurrence of the character in the pattern.

On the other hand, a good-suffix table stores the

matching shift value for each character in the pattern.

The maximum of the shift value between the bmBc

(character in the text due to which a mismatch occurred)

dependent expression and from the bmGs table for a

matching suffix is considered after each attempt, during

the searching phase. This algorithm forms the basis for

several pattern-matching algorithms [6].

6) Quick Search algorithm: The bad-character shift used in

the Boyer-Moore algorithm is not very efficient for small

alphabets, but when the alphabet is large compared with

the length of the pattern, as it is often the case with the

ASCII table and ordinary searches made under a text

editor, it becomes very useful. Using it alone produces a

very efficient algorithm in practice.

Time complexity

 Preprocessing phase in O(m+ σ) time and O(σ) space

complexity, σ is the number of alphabets in pattern.

 Searching phase in O(mn) time complexity.

7) The Horspool Algorithm (HORSPOOL): The Horspool

algorithm is a derivative of Boyer-Moore1 and is easy to

implement. When the alphabet size is large and the

length of the pattern is small, it is not efficient to use

Boyer-Moore’s bad-character technique. Instead, it is

always enough to find the bad-character shift of the

right-most character of the window to compute the value

of the shift. These shift values are computed in the

preprocessing stage for all the characters in the alphabet

set. Hence, the algorithm is more efficient in practical

situations where the alphabet size is large and the length

of the pattern is small [7].

Time complexity [10]

 Preprocessing phase in O(m+ п) time and O(п) space

complexity.

Shivani Jain et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

 Searching phase in O(mn) time complexity.

 The average number of comparisons for one text

character is between 1/п and 2/(п+1).

(п is the number of storing characters)

2.2. APPROXIMATE STRING MATCHING

ALGORITHM

Approximate string matching consists in finding all

approximate occurrences of a pattern x of length m in a text y

of length n. Approximate occurrences of x are segments of y

that are close to x according to a specific distance. The

distance must be not greater than a given integer k. We

consider two distances, the Hamming distance and the

Levenshtein distance [8].

1) Levenshtein or edit distance [Levenshtein 1965]: The

Levenshtein distance is a string metric for measuring the

amount of difference between two sequences. The term

edit distance is often used to refer specially to

Levenshtein distance. The Levenshtein distance between

two strings is defined as the minimum number of edits

needed to transform one string into the other, with the

allowable edit operations being insertion, deletion, or

substitution of a single character in the simplified

definition, all the operation cost is 1. It is named after

Vladimir Levenshtein, who considered this distance in

1965. Time complexity of this algorithm is O(mn). It

may not be useful while comparing long query strings.

Levenshtein distance is named after the Russian scientist

Viadimir Levenshtein, who devised pronounce

Levenshtein. The metric is also called edit distance. The

edit distance δ(p, t) between two strings p (pattern) and t

(text) (m = |p|, n = |t| is the minimum number of

insertions, deletions and replacements to make p equal to

t. the term edit distance is sometimes used to refer to the

distance in which insertions and deletions cost and

replacement have twice the cost of an insertion.

2) Hamming distance [Sankoff and Kruskal 1983]: The

Hamming distance is named after Richard Hamming,

who introduced it in his fundamental paper on hamming

codes Error detecting and error correcting codes in 1950.

It is used in telecommunication to count the number of

flipped bits in a fixed-length binary word as an estimate

of error, and therefore is sometimes called the signal

distance. The Hamming Distance allows only

substitution, which cost is 1 in simplified definition. For

comparing string of different lengths or strings where not

just substitutions but also insertion or deletions have to

be expected, a more sophisticated metric like the

Levenshtein distance is more appropriate.

The Hamming distance between two strings of equal

length is the number of positions at which the

corresponding symbols are different. Put another way, it

measure the minimum number of substitutions required

to change one string into the other, or the number of

errors that transformed one string into the

other.Hamming distance is defined only for string of the

same length. For two string p and t, H (p, t) is the

number of places in which the two strings differ.

Running time is O(n).

3) Shift-Or Algorithm: The Shift-Or Algorithm is both very

fast in practice and very easy to implement. It adapts to

the two above problems. We initially describe the

method for the exact string-matching problem and then

we show how it can handle the cases of k mismatches

and of k insertions, deletions, or substitutions. The main

advantage of the method is that it can adapt to a wide

range of problems.

Main features [11]

 Uses bitwise techniques.

 Efficient if the pattern length is no longer than the

memory-word size of the machine.

 Preprocessing phase in O(m +) time and space

complexity.

 Searching phase in O(n) time complexity

(independent from the alphabet size and the

pattern length).

 Adapts easily to approximate string matching.

4) Wu-Manber Algorithm: The WuManber algorithm is a

suffix-search based multi-pattern search algorithm. The

key idea of Wu and Manber is to use blocks of characters

of length B to avoid the weakness of the Horspool

algorithm [12]. Wu-Manber algorithm is a bitmap

algorithm based on Levenshtein distances. The Wu-

Manber algorithm assumes that the pattern length is no

more than the memory-word size of the machine, which

is often the case in applications. The preprocessing phase

takes O(σm+km) memory space, and runs in time

O(σm+k). The time complexity of the searching phase is

O(kn).

3. CONCLUSION

This paper describes the concept of string matching

algorithms. String matching or searching algorithms try to find

places where one or several patterns are found within a larger

text. We focus on various already exist exact string matching

and approximate string matching algorithms such as Knuth-

Shivani Jain et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED

Morris-Pratt, Boyer-Moore, Quick-search, Horspool, Shift Or,
Wu-Manber Algorithms in this paper.

REFERENCES

1) Georgy Gimel'farb (with basic contributions from M. J. Dinneen,

Wikipedia, and web materials by Ch. Charras and Thierry Lecroq,
Russ Cox, David Eppstein, etc.)

2) M. Crochemore and T. Lecroq, Pattern Matching and Text

Compression Algorithms, ACM Computing Surveys, 28,1 (1996)

Science, University of Texas at Austin,
http://www.cs.utexas.edu/~plaxton/c/337/05f/slides/StringMatchin
g-1.pdf

6) A FAST Pattern Matching Algorithm, S. S. Sheik, Sumit K.

Aggarwal, Anindya Poddar, N. Balakrishnan, and K. Sekar*,

Bioinformatics Centre and Supercomputer Education and Research

Centre, Indian Institute of Science, Bangalore 560 012, India, J.
Chem. Inf. Comput. Sci. 2004, 44, 1251-1256

7) D Horspool, R. N. Practical fast searching in strings. Software –

Practice Experience 1980, 10(6), 501-506.

8) Pattern matching and text compression algorithms, Maxime
2

39--41.
Crochemore 1 Thierry Lecroq

mlv.fr/~lecroq/articles/lir9511.pdf
, http://www-igm.univ-

3) by G Navarro - Cited by 52 - Related articles department of
computer science university of Chile blanco encalada 2120
citeseerx.ist.psu.edu/viewdoc/download.

4) http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorit

hms/StringMatch/naiveStringMatch.htm

5) String Matching: Rabin-Karp Algorithm, Greg Plaxton, Theory in
Programming Practice, Fall 2005, Department of Computer

9) A very fast substring search algorithm, SUNDAY D.M.,

Communications of the ACM, 33(8),1990, pp. 132-142.
10) HORSPOOL R.N., 1980, Practical fast searching in strings,

Software - Practice & Experience, 10(6):501-506.

11) http://www-igm.univ-mlv.fr/~lecroq/string/node6.html

12) http://webpages.cs.luc.edu/~pld/courses/447/sum08/classA/groepl,

klau,reinert.2002.fast_exact_string_matching.pdf

http://www-igm.univ-mlv.fr/~lecroq/index.html
http://www.cs.utexas.edu/~plaxton/c/337/05f/slides/StringMatching-1.pdf
http://www.cs.utexas.edu/~plaxton/c/337/05f/slides/StringMatching-1.pdf
http://www-igm.univ-mlv.fr/~lecroq/articles/lir9511.pdf
http://www-igm.univ-mlv.fr/~lecroq/articles/lir9511.pdf
http://scholar.google.co.in/scholar?hl=en&lr=&cites=10119979396018296754&um=1&ie=UTF-8&ei=QtjOT7G4KYzrrQeXhqGvDA&sa=X&oi=science_links&ct=sl-citedby&resnum=3&sqi=2&ved=0CF4QzgIwAg
http://scholar.google.co.in/scholar?hl=en&lr=&q=related:slfxiaRjcYwJ:scholar.google.com/&um=1&ie=UTF-8&ei=QtjOT7G4KYzrrQeXhqGvDA&sa=X&oi=science_links&ct=sl-related&resnum=3&sqi=2&ved=0CF8QzwIwAg
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/StringMatch/naiveStringMatch.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/StringMatch/naiveStringMatch.htm
http://www-igm.univ-mlv.fr/~lecroq/string/node6.html
http://webpages.cs.luc.edu/~pld/courses/447/sum08/classA/groepl,klau,reinert.2002.fast_exact_string_matching.pdf
http://webpages.cs.luc.edu/~pld/courses/447/sum08/classA/groepl,klau,reinert.2002.fast_exact_string_matching.pdf

