
DATA INTEGRITY PROOFS IN CLOUD

STORAGE

 Bhushan Koli, Rahul Kute, Deepak Oza, Jigar Prajapati, Sachin Gavhane

Department of Information Technology

Atharva College of Engineering, University of Mumbai, India.

 bhushank008@gmail.com, rbk3192@gmail.com, alkaoza44@yahoo.com,jigarprajapati15@yahoo.com
sachin2006g@yahoo.co.in

Abstract - To ensure data integrity, the endorsement

copy of a file must be an accurate image of the unique at

a given point in instant. However, replication of a file is

not an direct process. Unless the file is very small, the

support user must read from the file and write to the

support medium numerous times to make a absolute

copy. If the support user cannot make sure that no other

application modifies the file while it is being unoriginal,

you may have a problem with the integrity of the data

being unoriginal. Since the high rate of data storage

space devices and the rapid expansion of data generated

is very costly for enterprises or users to regularly update

their devices. In cloud storage, data is being transferred

to data centers which are distantly situated and users

don’t have right to use these data centers.

There should be a method for the user to check if the

integrity of the data is maintained or is compromised. In

this paper we offer a idea which helps the users to verify

the rightness of data in the cloud. This evidence is

approved upon by both the cloud and the user and can

be included in the Service Level Agreement (SLA). With

this idea the user side has to maintain minimal storage

which is advantageous for the user.

Keywords – Service Level Agreement (SLA), Proof of

Retrievability, Data Integrity.

I. INTRODUCTION

Since Data Outsourcing is of financial raising it is a growing

fashion among the cloud data storage. This basically means

that the user of the data moves its data to a third party cloud

storage server which authentically stores the data with it and

provide it back to the owner whenever necessary.

Whenever extra data is created it becomes complicated for

small firms to inform their hardware and also maintaining

the storages can be a complicated task. Small firms decrease

their storage price by outsourcing their data to cloud storage.

The cloud storage also maintain several copies of user’s data

thereby falling the chance of losing data by hardware crash.

In this paper we contract with the difficulty of implementing

a protocol for obtaining a evidence of data control in the

cloud sometimes referred to as Proof of Retrievability

(POR). This idea tries to gain a proof to facilitate the

information being stored by the user at a distant data storage

in the cloud is not modified by anyone. This helps a system

to stay away from the cloud storage from misinterpreting

and modifying the data stored at it without the consent of the

data owner by using frequent checks on the storage archives.

While storing data at the cloud storage space we are

restricted by the resources at the cloud storage servers. Since

the data volume of the user is very huge and stored at

distant places, accessing the complete file can be costly in

I/O costs to the storage server and also transmitting the

complete file across network consumes a large bandwidth.

Since the increase in storage capacity has far out spaced the

increase in data right to use as well as network bandwidth,

accessing and transmitting the complete records even

infrequently greatly restrictions the scalability of the

network resources. This problem is further more difficult by

the fact that the owner of the data may be a small device,

like PDA (Personal Digital Assist) or a cell phone, which

have less CPU power, battery power and communication

bandwidth. So the idea needs to be able to produce a proof

without the need of the server to right to use the complete

file or the client retrieving the complete file from the server.

Also the idea should reduce the local working out at the

client as well as the bandwidth consumed at the client.

II. PROBLEM DEFINITION

Storing of user data in the cloud even though its advantages

has many interesting security concerns which need to be

widely investigated for making it a consistent solution to the

problem of avoiding local storage of data. Many problems

 © 2014 JCT. ALL RIGHTS RESERVED 40

Journal of Computing Technologies (2278 – 3814) / # 40 / Volume 3 Issue 3

mailto:%7d@gmail.com
mailto:@gmail.com
mailto:alkaoza44@yahoo.com
mailto:sachin2006g@yahoo.co.in

Fig. 1 Architecture

like data verification and integrity (i.e., how to

professionally and steadily ensure that the cloud storage

server returns accurate and entire results in response to its

clients’ queries, outsourcing encrypted data and related

complicated problems dealing with querying over encrypted

area were discussed in study literature.

III. PROPOSED SYSYTEM

Synchronization of files such as pictures, document, sound

etc. The user interface will show a multiple option to

arrange, organize etc to the main device. The availability of

following options are , the data files to be arranged in order

required ,duplicate files to be removed, files to be stored in

other device. One of the most important concerns that need

to be addressed is to assure the customer of integrity i.e. the

correctness of his data in the cloud. In this paper we offer a

idea which gives us a proof of data integrity in the cloud

which the customer can employ to check the correctness of

his data in the cloud. Service level agreement (SLA) this

proof can be agreed by both cloud and customer. It is

important to note that our proof of data integrity protocol

just checks the integrity of data. Any file, media or

document added to the destination. The user open the same

folder on the other device the added file will be present there

will be present there with the help of synchronization

process. There will be common server for one working

environment. The multiple clients will be provided with a

server which will work as cloud storage. For one company,

one organization or can be for one branch!

IV. METHODOLOGY

Message Digest 5 (MD5) Algorithm

MD5 is a message by digest algorithm developed Ron

Rivest at MIT.

The algorithm takes as input a message-bit of arbitrary

length and produces as output a 128 message digest of the

input.

This is mostly intended for digital signature applications

where a large file must be compressed in a secure manner

before being encrypted with a private (secret) key under a

public key cryptosystem.

Steps to calculate Message Digest of the input message:

 Step 1: Append Padding Bits

The message is "padded" (extended) so that its length (in

bits) is equal to a length which is 64-bits less than exact

multiple of 512. That is, the message is extended so that it is

just 64 bits shy of being a multiple of 512 bits long.

 Padding should be performed even if the length of the

original message is equal to 64-bits less than exact multiple

of 512.

Padding is performed as follows: a single "1" bit is

appended to the message, and then "0" bits are appended so

that the length in bits of the padded message becomes 64-

bits less than exact multiple of 512-bits.

 Step 2: Append Length

 After padding bits are added, next step is to calculate the

original length of the message and add it to the end of the

message, after padding. The length of the message is

calculated, excluding the padding bits (i.e. it is the length

before the padding bits were added).

This length of the original message is now expressed as a

64-bit value and these 64 bits are appended to the end of the

original message + padding. If the length of the message

exceeds 2
64

 bits, then the lower-order 64 bits of the length

are used.

Step 3: Divide the input into 512-bit block

Now divide the input message into blocks, each of length

512 bits.

 © 2014 JCT. ALL RIGHTS RESERVED 41

Journal of Computing Technologies (2278 – 3814) / # 41 / Volume 3 Issue 3

Step 4: Initialize Chaining Variables

 A four-word buffer (A, B, C, and D) is used to compute the

message digest.

Here each of A, B, C, D is a 32-bit register which are

initialized to the following values in hexadecimal.

 Word A: 01 23 45 67

 Word B: 89 ab cd ef

 Word C: fe dc ba 98

 Word D: 76 54 32 10

Step 5: Process Message

Step 5.1: Copy the four variables into four corresponding

variables, a, b, c and d. Thus, we have a=A, b=B, c=C and

d=D.

Step 5.2: Divide the current 512-bit block into 16 sub-blocks

i.e. each sub-block is of size 32 bits.

Step 5.3: Now, there are four rounds. In each rounds, all the

16 sub-blocks are processed belonging to a block. The input

to each round are: (a) all the 16 sub-blocks, (b) the variables

a, b, c, d and (c) some constant, t.

All the four rounds vary in one major way: Step 1 of the

four rounds has dissimilar processing. The further steps in

all the four rounds are the similar.

 In each round, there are 16 input sub-blocks, M[0],

M[1], ….., M[15] or in general, M[r], where R

varies from 0 to 15.

 Also t is any constants array which contains 64

elements, with each element consisting of 32 bits,

they are denoted as t[1], t[2],….. t[64] or in

general, t[k], where k can take values from 1 to 64.

Each the four rounds takes 16 values of the 64

values of t.

The iterations of the all four rounds is as follows:

A process P is Performed on b, c and d. This process is

different in all the four rounds.

 The variable a is added to the output of the process

p (i.e. to register abcd).

 The message sub-block M[r] is added to the output

of Step 2.

 To the output of Step 3, t[k] which is a constant is

added.

 The output of Step 4 is circular-left shifted by ‘s’

bits (the value of s keeps changing).

 To the output of Step 5, variable b is added.

 The value of abcd obtained in Step 6 now becomes

the abcd value for next round.

Process P for each of the four rounds:

Round 1: (b AND c) OR ((NOT b) AND (d))

Round 2: (b AND d) OR (c AND (NOT d))

Round 3: b XOR c XOR d

Round 4: c XOR (b OR (NOT d)).

V. CONCLUSION

In this paper we proposed MD5 algorithm which gives the

user a proof of data integrity. It provides flexible and cost

effective alternatives to store data at cloud. This algorithm

can be used to construct a constant length message digest

which is 128-bits irrespective of the size of the message.

REFERENCES

[1] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and

integrityin outsourced databases,” Trans. Storage, vol. 2, no. 2, pp. 107–

138, 2006.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for

searcheson encrypted data,” in SP ’00: Proceedings of the 2000 IEEE

Symposiumon Security and Privacy. Washington, DC, USA: IEEE

Computer Society, 2000, p. 44.

[3] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability for

largefiles,” in CCS ’07: Proceedings of the 14th ACM conference on

Computer and communications security. New York, NY, USA: ACM, 2007,

pp. 584–597.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, “Provable data possession at untrusted stores,” in CCS ’07:

Proceedings of the 14th ACM conference on Computer and

communications security. New York, NY, USA: ACM, 2007, pp. 598–609.

[5]. R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, MIT LCS &

RSA Data Security, Inc., April 1992.

 [6]Green Cloud Computing: Balancing Energy in Processing, Storage,

and Transport :Baliga, J.; Ayre, R.W.A.; Hinton, K.; Tucker,

R.S.; Proceedings of the IEEE Volume: 99 , Issue: 1 Digital Object

Identifier: 10.1109/JPROC.2010.2060451 Publication Year: 2011 ,

Page(s): 149 - 167 Cited by: 1.

[7]Analysis and Research of Cloud Computing System Instance: Shufen

Zhang; Shuai Zhang; Xuebin Chen; Shangzhuo Wu; Future Networks,

2010. ICFN '10. Second International Conference on Digital Object

Identifier: 10.1109/ICFN.2010.60 Publication Year: 2010 , Page(s): 88 –

92.

 © 2014 JCT. ALL RIGHTS RESERVED 42

Journal of Computing Technologies (2278 – 3814) / # 42 / Volume 3 Issue 3

