
Dependency Management in Component Based Systems

 Ramandeep Kaur
*1

 Aman Arora
 2

 CSE & Punjab Technical University CSE&PTU

 Sai Institute of engineering &Technology, Amritsar Sai Institute of engineering &Technology, Amritsar

 raman_nandha006@yahoo.co.in aman_study@yahoo.com

Abstract— Dependency in component-based software system

basically deals with controlling the configuration of the

components. Software developed with commercial off the shelf

(COTS) has many advantages as compared to traditional

software development. But still while developing component-

based software, some factors need to be considered. Because the

components are developed separately from the system, there is a

need to manage dependencies among components. As the time

passes, certain changes are required in the components as well as

in the system. When software is updated, certain compatibility

issues need to be addressed. This paper tries to illustrate

dependency management concepts in component-based systems.

A tool named as Dependency Walker is used to calculate the

component dependencies with respect to different versions of

same software.

Keywords— Component Dependency Management, Managing

Components, Component Interface, Managing Change

Dependencies, Dependency Walker

I. INTRODUCTION

Component-based software (CBS) is built through the ways of

composition and integration, this development style is quite

favorable for time and budget constrained [1]. Component-

based software engineering improves productivity, quality and

reusability and reduces maintenance overheads and time to

market [2]. Dependency analysis is a useful technique that has

many applications in software engineering activities including

software understanding, testing, debugging, maintenance, and

evolution. Similar to object-oriented systems, in which object

is the basic building block, in component-based software

systems, component is the building block. So it is very

important to analyze component’s context and its running

environment in order to efficiently manage all kinds of

dependencies in component-based software systems. Larsson

[6] has defined dependency management as follows:

Dependency Management (CM) is a discipline, which controls

the consistency between the parts of the entire system, and can

increase the reliability of component-based products.

Configuration management (CM) is used to manage the

development of complex systems.CM covers version, change,

build, release and workspace management [5][12][13][14]. In

order to apply managing dependencies between different

versions of a component is an important issue in component

configuration management (CCM). A software component is a

unit of composition with contractually specified interfaces and

explicit context dependencies only [10]. When developing

component-based software, it is really difficult to keep track

of components. As this is to be done in early stages of

software development so firstly components need to be

identified. Then during the up gradation and assembly phase,

dependency management is an important function.

Dependency management is usually done with dependency

graphs etc. So in component dependency management, firstly

components are identified, then a dependency model is

selected. Afterwards change management is done and at the

last stage dependencies among various components are

managed.

 II. RELATED WORK

In estimation of maintenance cost of software i.e. higher is the

impact of change in a part of the system; more is the cost of

implementing that change. A dependency matrix based

approach is proposed for recording the interdependencies in

software components [3]. A matrix based approach is used to

understand and manage the different forms of dependencies

between components with the help of component dependency

life cycle. Component dependency metric is used to represent

the dependencies between components and the use of

component interaction density metric shows relationship

between component dependencies and their architecture [4].

Larsson [5] has given discussed some of the problems faced in

Component-based systems and their possible solutions.

Configuration Management (CM) is used for managing the

complex components. In configuration management, version,

change, build, release and workplace management are covered

for this purpose. [7] has applied the Dependency Structure

Matrix (DSM) to check design violation in architectural

designs. In this approach every I, Jth cell of matrix contains

the strength of dependencies in component pair (i, j). Vieira

and Richardson [8] [9] used component-based dependency

model (CB DM) to manage dependencies in Component-

based software systems (CBSs). The CBDM is a graph that

represents the “special associations” among the system’s

components based on their service. Stafford et.al, [15]

developed an architectural level dependency analysis

technique called chaining. Chains represent dependency

relationships in an architectural specification. The individual

chain associates elements of architecture that are directly

related.

 III. MANAGING COMPONENTS

Components typically consist of shared libraries, where the

component functions are implemented. The programs using

components do not refer to the libraries directly but to the

component interfaces. The libraries are implementations of the

interfaces. There are needed to keep track of changes on both

logical and physical levels as well as their relations. Both

libraries and interfaces must be identified. Component

 © 2014 JCT. ALL RIGHTS RESERVED 43

Journal of Computing Technologies (2278 – 3814) / # 43 / Volume 3 Issue 3

Configuration Management must work on both levels.

Versioning of interfaces is a more difficult task, because the

interface is an abstraction without information about the

physical representation. For this reason, separate the problem

of managing components onto two levels: Managing libraries

and managing interfaces [6]. Managing libraries prevented the

executable from being updated when a new version of the

library was released and Managing interfaces establish

connection between a component and its user. If an interfaces

is changed, the user needs to know that it has been changed

and how to use the new version. Kruchten defines an interface

as a collection of operations that are used to specify a service

of component [11]. An interface serves to name a collection of

operations and specify their signatures and protocols. An

interact focuses upon the behavior, not the structure, of a

given service.

 IV. MANAGING CHANGE DEPENDENCIES

 Managing Change, One of the major challenges in CBSs is

how to manage changes, because the primary objective of a

component is that it must be easily replaceable, that means

two aspects: (1) Replaced by completely different

implementation of the same functions, and (2) Replaced by an

upgraded version of current implementation. When a system's

various components evolve and its requirement changes, this

objective places the emphasis on the architecture of the

system, on being able to manage the total system.

Directed Graph:

Let V be a finite nonempty set, and let EV V. The pair (V,

E) is then called a directed graph, in which V is the set of

vertices, or nodes and E is a set of directed edges or arcs

represented by ordered pairs. Such a directed graph is denoted

G = (V, E). The notation a b denotes (a, b) as edge.

 Fig 1: A graph G with 5 nodes a, b, c, d, e

 Table 1: Adjacency Lists of G

This figure 1 shows an example of a graph G = (V, E), in

which V= {a, b, c, d, e} and E = {(a, b), (a, d), (b, c), (d, c), (d,

e), (e, c)}. Placing an arrow on the edge indicates the direction

of the edge. Which is its list of adjacent nodes, also called its

successors or neighbors. Paths are introduced to be able to

define dependencies between components. An example of a

path from a to d in Figure 1 is <a, b, c, d> since each pair (a, b)

and (a, d) is a part of the set of edges E. Knowing that there is

a path from a to d indicates that a is dependent on d, since a is

affected if d changes. There are many algorithms to find all

the paths between two nodes. Warshall’s algorithm is mostly

used for this purpose. When the dependencies have been

calculated, it is possible to create a system structure, as

defined in [16], with different levels of components. On the

lowest level of components are components without

dependencies to other component. This system structure is

used as a model to calculate quality properties such as

complexity and localization factors. The complexity is

proportional to the number of dependencies between the

components. The localization factor denotes the number of

levels between components. A configuration is a set of

components and their dependencies to other components. The

configuration is a baseline since it represents a version of a

system at a particular time.

 V. DEPENDENCY WALKER: A TOOL

The tool “Dependency Walker”

(www.dependencywalker.com) helps us to find dependencies

by simply parsing the components. It is used for the

evaluation of the presented dependency model. It parses

through the system; finds all shared libraries and generates the

dependency graph. Scanning all shared libraries and

executables in a system creates a basic dependency graph. As

the new version of the component is installed, the task of

component dependency management is to handle all the

conflicts in that situation. Because in such a case, the new

component may have some additional dependent files. So

these are the issues to be handled by version management.

The information required by version management is mostly

made available by this dependency walker tool. The

information provided by the dependency walker for this

purpose is:

 General information regarding the file

 Module version numbers

 Image Version, OS Version, Subsystem Version,

Linker Version

 Types of Dependencies

 Implicit Dependency, Delay-load Dependency,

Forward Dependency, ExplicitDependency,

System Hook Dependency

 Application Profiling

 Dependency Tree View

 Module List View, Parent import Function List

View, Export Function List View, Log View.

For the purpose of version management, it is useful to gather

all the information required during the comparison of two

components or while looking at the dependent tiles of the

components. Otherwise it won’t be possible to gather all this

information required. As the goal of using this is dependency

management, so after collecting the information regarding the

 Node Adjacency List

A

B

C

D

E

B,D

C

Empty

C,E

C

 © 2014 JCT. ALL RIGHTS RESERVED 44

Journal of Computing Technologies (2278 – 3814) / # 44 / Volume 3 Issue 3

dependencies of a component, it is required to compare the

two versions of same component (figure 2).

Fig 2: Shows the various views of the dependency walker.

 VI. EXPERIMENTAL SETUP

Dependency Walker (DW) is basically used for version

management. So in order to do that, more than versions need

to be studied. In this section, two versions of same exe file are

taken. They are then studied in dependency Walker. For

instance, two versions of the software Acrobat Adobe Reader

are taken. One is version 9.0 and the other is 11.0. Both of

these exe files are opened in DW. Now for the purpose of

version management, all the necessary information which is

required and available is taken. Following are the changes

which are studied in them:

1. Number of .dll files under each of the exe file: As can

be seen from the snapshots given below (figure 3a, 3b), there

is difference in the number of dll files in the each of the exe

file. In version 9.0, there are 6 main dll files which in turn

contain many dll files. And in version 11.0, there are just 20

main dll files which also contain in turn contain many dll files.

So some difference in the dependencies can be made out here

also.

2. Number of missing files or modules: The number of dll

files which are studied, it can be easily seen that if some files

name contain an icon which can be of any sort but is red in

color. Then it shows that that particular file is missing or

giving some warning.

3. Different version values for almost all fields: As it is

already discussed that many different types of versions are

created. So, they can also be used to compare the two exes.

Whether file version is only new or the others also like OS

version, Product version etc. it can be analyzed that whether

all the dll files are updated or only selected one. Then after

this the change studied for further analysis.

Fig 3a: Showing DLL Files of Adobe Acrobat Reader

version 9.0

Fig 3b: showing DLL files of exe of Adobe Acrobat Reader

version 11.0

 © 2014 JCT. ALL RIGHTS RESERVED 45

Journal of Computing Technologies (2278 – 3814) / # 45 / Volume 3 Issue 3

 Table 2: Showing dll files with version details

This case study shows that number of components in two

versions of the same software are different i.e. Adobe Acrobat

Reader with version 9.0 has 06 components means 06 dll files

(first level dependencies) has 06 components means 06 dll

files (first level dependencies) whereas version 11.0 has 20

components means 20 dll files (first level dependencies).

Version 9.0 has greater dependency at next level where as

version 11.0 consists more functionalities at first level so less

complex at higher level. This shows that the various software

product operated in same environment, have different number

of dependencies. The reduced number of dependencies may

indicate toward the simple architecture of the component

integration. Components can be easily removed from their

original positions and plugged at new locations. This shows

that there exists a relationship between dependencies and

functionalities provided by the respective software. First level

dependencies can be measured manually but for calculation of

high level dependencies, an automated tool is required as

system level calculations cannot be performed manually.

 VII. CONCLUSIONS AND FUTURE WORK

The Components provide system functionalities by interacting,

cooperating and coordinating. Interaction, cooperation and

coordination will produce dependencies among them. Usually,

a group of components depend on each other to supply

complex system functionality. When the system evolves new

components are added or deleted. As a result, new

dependencies occur. A tool named as dependencies walker by

Microsoft is used to calculate the first level dependencies

between the components. The case study shows that when

new versions releases, number of DLL files also increases,

which result the increase in functionality of new version. The

future work includes the implementation of component design

metrics in order to measure the size of the component. This

can calculate the maintainability index factor and measure the

strength of weight dependencies.

REFERENCES

1. Rajender Singh Chiller, “Measuring complexity of

component-based system using weighted assignment

technique” IPCSIT vol. 55(2012).

2. Kirti Tyagi, Arun Sharma, “Reliability of Component

Based Systems – A Critical Survey” Issue 2,Volume 11,

February (2012).

3. Kuljit Kaur, Hardeep Singh and Debasish Jana, “A

Framework to Analyze impact of change in component based

software engineering”, Proceedings for 2nd International

Workshop on Tool Support and requirements Management in

Distributed Bangalore, India August 17th (2008).

4. Parminder Kaur, Hardeep Singh, “A Metric-Based Analysis

of component Dependencies”, Journal of the CSI, Vol.38,

Issue No., Oct., Dec., (2008).

5. Larsson M., “Applying Configuration Management

Techniques To component Based Systems”, IT Licentiate

Thesis, 2000-07, Department of Information Technology,

Uppsala U niversity, (2007).

6. Larsson M. and Crnkovic I., “New Challenges for

Configuration Management”, MRTC Report, IT Licentiate

thesis, 2000-07, Uppsala University.

7. Sanghal N.Jordon E., Sinha V and Jackson D., “Using

Dependency Models to manage Complex Software

Architecture”, OOPSLA 05, San Deigo, California, USA

(2005).

8. M.Viera, D.J.Richerdson, “Classifying and Dealing with

dependencies in large Component Based Systems”, 15th

International Conference on software & systems Engineering

& their applications, Paris, December (2002).

9. M. Viera, D.J. Richerdson, “The role of Dependencies in

Component Based Systems testing and Evolution”,

Proceedings of the IWPSE-02, 24th International Conference

on Software Engineering (ICSE 02, Orlando, USA), May

(2002).

10. C.Szyperski, D.Gruntz, and S.Murer, “Component

Software: Beyond Object-Oriented Programming”, 2nd

Edition, New

 York: Addison-Wesley/ACM Press, (2002).

11. Kruchten Philipe, “Modeling Component Systems with

the unified modeling language”,

http://cis.cs.tu_berlin.de/Lehre/WS/0001/Sonstiges/Konteng_s

em/papers/Modeling_Componentsystems_with_UML.Pdf”,(2

001).

12. Somerville I., “Software Engineering”, Addison Wesley

(2001).

13. Asklund, U., Configuration Management for Distributed

Development - Practice and Needs, Dissertation 10,

Department of Computer Science Lund University, (1999).

14. Continuus Software Corporation, Continuus,

http://www.continuus.com.

15. Stafford, J.Alexander, W., “Architecture level dependence

analysis in support of software maintenance”, proceedings of

3rd International Software Architecture Workshop, Orlando

Florida, USA, ACM press, November (1998).

16. Crinkovic, I., “Large Scale Software System Management,

Ph.D. Thesis, Department of Electrical Engineering,

University of Zagreb, (1991).

Acrobat Adobe

Reader version with

details

Acrobat Adobe

Reader 9.0

 Acrobat Adobe

Reader 11.0

No. of Components 6 20

 Kernel DLL Files 25 25

 User DLL Files 8 8

 Advapi DLL Files 20 20

 Shell DLL Files 48 82

 © 2014 JCT. ALL RIGHTS RESERVED 46

Journal of Computing Technologies (2278 – 3814) / # 46 / Volume 3 Issue 3

