
Client Side Detection of MIME Sniffing
Siddhesh Dabholkar

1
, Rakesh Patil

2
, Uttam Vaishnav

3

Jyothi Arun
4
, Assistant Professor

Department of Information Technology, Atharva College of Engineering, Mumbai University

Maharashtra, India
1
s.dabholkar99@gmail.com,

2
rakeshpatil5192@gmail.com,

3
uttamvaishnav3@gmail.com,

4
amritajyothi87@gmail.com

Abstract — Due to the increase in web technology most of the

people rely on the Internet for their daily routine. People access

data without knowing the vulnerabilities in it. Nowadays without

security measures data might be vulnerable to an attack. These

attacks can either get access to monitor the information, or can

modify the information which can eradicate the data. MIME

(Multipurpose Internet Mail Extensions) sniffing vulnerabilities

are the major security threats today when we are in the server-

client environment or using any web browser. It aims to protect

vulnerable browsers which may treat non-HTML files as HTML

files. Their filter examines user uploaded files against a set of

potentially dangerous HTML elements. We implement private

key cryptography to encrypt the requested data by the client

from the server. We use file splitting technique to minimize file

processing time. This helps the File execution to take place within

milliseconds. To notify any modification in the data we are

implementing Tag bit concept. We use message digest algorithm

to generate tag bits. .

Keywords— MIME sniffing, cryptography, tag bit, MD5

algorithm.

I. INTRODUCTION

Today, most of us use internet to fulfil most of our daily

routine activities. This may include social networking, emails,

online money transactions and much more. As this internet

communications includes sensitive information like passwords,

account number or other secret data we want to ensure its

security. With growth in the field of technology it is now

possible to intercept the online communication and retrieve

the confidential data. This attack allows the attacker to fetch

or modify the data without making the user aware of such

modifications. So in order to prevent such attacks, it is

necessary to implement security mechanisms to ensure the

safety of the sensitive information on the Internet.

After studying various analyses on network security we can

conclude that there is much vulnerability still present in the

transmission procedure when user accesses the web. MIME

sniffing attacks is one of the threats that take place between

such communications. MIME sniffing attacks occur when a

browser treats non-HTML files as HTML files. These non-

HTML files may be injected with malicious code which will

be executed when the user opens it. For example if the

attacker manipulates the content in a way to be accepted by

the web app and rendered as HTML by the browser, it is

possible to inject code in an e.g. image file and make the

victim execute it by viewing said image.

When we are preventing the attack from the server side and it

will be notified to the client then we can prevent the attack.

II. PROBLEM DEFINITION

A web browser handles all the files or data that the user

request from the web server. The type of the file is considered

by the web browser in order to handle the requested file. For

an instance, the browser will handle image files differently

than text files. Mostly the web server will specify correct type

of file through a Content-Type header, while few web servers

specify incorrect Content-Type header. This feature of the

web browser to determine the correct content type of the file

is called as MIME sniffing. This is also known as Content

sniffing. This feature has a step that checks the first 256 bytes

of a file against a list of defined headers. This feature helps

the user to successfully browse the web, but can also turn into

a source of attack. Many security issues have been discussed

in the past, with its prime focus on web applications that

permits users to upload images. The MIME sniffing algorithm

checks only the content-type header of the images. if a web

application allows user to upload images and check only its

file extension, the user might upload an image.jpg file which

contains malicious HTML code. This could lead to an attack.

There are several attack detection approaches that are

deployed at program runtime [7][8][9][10][11].Various

detection mechanisms for MIME sniffing attacks have been

developed till date. However these mechanisms have

limitations of their own. We have identified limitations among

few mechanisms which are:

1) Many mechanisms will assume that all web based

programs are trusted and authorized.

2) Most of them depend on the alteration of client and

server environments or the type of communication

that takes place between these sides.

3) Many approaches do not completely address to these

network attacks such as MIME sniffing, SQL

injection and many more.

 © 2014 JCT. ALL RIGHTS RESERVED 50

Journal of Computing Technologies (2278 – 3814) / # 50 / Volume 3 Issue 3

4) These attack detection approaches often takes too

long especially in case of large files.

III. RELATED WORK

In 2009, Adam Barth et al. formulate content-sniffing XSS

attacks and defences. They study content sniffing XSS attacks

systematically by constructing high fidelity models of the

content-sniffing algorithms used by four major browsers.

They compare these models with Web site content filtering

policies to construct attacks. To defend against these attacks,

they propose and implement a principled content-sniffing

algorithm.

In 2011, Anton Barua et al. Developing a server side content

sniffing attack detection mechanism based on content analysis

using HTML and JavaScript parsers and simulation of

browser behaviour via test downloads. They implemented

their concept using a tool which can be integrated in web

applications written in various languages. They also

developed a proper framework for evaluation purpose that

contains both benign and malicious files.

In 2012, Syed Imran Ahmed Qadri et al. Provide a security

framework for server and client side. In this framework client

access the data which is encrypted from the server side. From

the server data is encrypted using private key cryptography

and file is send after splitting so that we reduce the execution

time. They also add a tag bit concept which is included for the

means of checking the alteration; if alteration performed tag

bit is changed.

In 2013, Animesh Dubey et al. propose an efficient partition

technique for web based files (jsp, html, php), text (word, text

files) and PDF files. They are working in the direction of

attack time detection. For this motivation they are considering

mainly two factors first in the direction of minimizing the

time, second in the direction of file support. For minimizing

the time we use partitioning method. They also apply

partitioning method on PDF files. There result comparison

with the traditional technique shows the effectiveness of their

approach.

IV. PROPOSED APPROACH

In this paper we provide a security mechanism on the server

side as well as on the client side. This approach will detect

MIME sniffing attack on the server side and alert it on the

client side.

A. Working Process

The working process of the mechanism is shown in figure 1.

When client wants to get data from the server side it will first

establish a secure connection to the server. Client requests for

the data from the server and the admin will provide the

required data if it is available in the server database. The

server will provide the data by first encrypting it by using the

concept of private key cryptography. It uses the same key for

encryption and decryption process, which is also known as

symmetric key cryptography.

Fig 1: Working Diagram

To send encrypted messages to each other every user should

be in the possession of the same key. The same key will be

used by the sender to encrypt their message before sending it

to the receiver. At the receiver end the same key will be used

by the receiver to decrypt the message.

The end users should protect the secret key properly, if not

could lead to an attack. If an attacker is able to intercept this

secret key he will be able to read all the encrypted messages

that are being transmitted between the users. Therefore

protection of this secret key is very important. Base64 encode

and decode is used in java defined by RFC 2045 that provides

symmetric key encryption.

Conceptually, symmetric is simple which is a secret decoder

ring model. Encryption and Decryption are done using the

same secret decoder ring. Take an example of a door lock,

which can be locked and unlocked using the same door key.

After a successful encryption process comes the splitting part.

The file will then be spitted according to the length. This will

reduce the complexity and time span of sending the file to the

user. At the end we also add the hidden tag bit to the file. The

purpose of the tag bit is to notify the client that an attack has

occurred and alteration of data has taken place. A memory

buffer is also included which will detect the content alteration.

Message Digest algorithm is used for this part.

 © 2014 JCT. ALL RIGHTS RESERVED 51

Journal of Computing Technologies (2278 – 3814) / # 51 / Volume 3 Issue 3

As shown in Figure 1, if an attacker tries to intercept the

communication and modify the data, tag bit will change and

this attack will be notified to the client.

Two types of databases are created for managing the

information. One database is from the server side and another

database is from the client side. At the server side, we manage

two copies of the same table for before send and after send.

These tables includes the username, filename, tag count, tag

bit and the secret key that will be used for encryption and

decryption process. When the content in the file is

automatically modified the tag bit will be 1 which will

indicate that the contents in the file have been altered. The

client will be informed about this alteration so that those

clients would re-request data from the server.

TABLE I

File info before send

Username File name Tag count Tag bit Key

rani page.html 813 0 6xygmk

rani web_sample1.ht

ml

433 0 Zimmrf

TABLE III

Client access info

File name Tag

count

Tag

bit

Key Send

time

Receive

time

page.html 813 1 6xygm

k

13:49:8:5

9

13:49:8:9

web_sample1.

html

433 1 Zimmr

f

13:56:11:

6

13:56:11:

71

html-hell.html 332 1 kIZAJ

q

14:0:56:6 14:0:56:5

6

TABLE IIIII

File info after send to client

User name File name Tag

count

Tag

bit

Key

rani page.html 813 1 6xygmk

rani web_sample1.html 433 1 Zimmrf

rani html-hell.html 332 1 kIZAJq

V. ALGORITHM

A. Message Digest 5 (MD5) Algorithm

Message Digest (MD5) algorithm was developed in 1991

by Ronald L. Rivest. The message digest 5 (MD5)

algorithm takes as input a message of any arbitrary length

and produces a 128-bit message hash as output. In MD5

terminology message hash is also called as message

digest. Of the input message while the MD5 algorithm is

computationally complex to understand, a simple

description is provided in this section. The MD5

algorithm is defined as a sequence of the following steps.

1) Append Padding Bits

The input message is padded or extended such that

its length (in bits) modulo 512 is 448. In other words

the message is extended in a manner so as to make it

just 64 bit less than being the multiple of 512 bits.

2) Append length

Next, a 64 bit representation of the length of the

message is appended to the end of message. The

length of the message is the length before padding

bits where added. In case the length is greater than

2^64 than, only the lower order 64 bit of the

representation of the length (in bits) are used. After

appending the length to the message, the resulting

message now as a length that is the exact multiple of

512 bits.

3) Divide into blocks

After the message is made a multiple of 512 bits, it is

divided into blocks of 512 bits each. Each block of

512 bit is itself considered a sequence of sixteen 32

bits word. The mD5 algorithm is then applied on

each of these blocks in a sequence, as described in

the next step.

4) Apply MD5 algorithm on each block.

The MD5 algorithm is block chained hashing

algorithm. In MD5 a hash function is first applied to

the 1
st
 block in the message and initial seed value is

provided as a parameter to the hash value, along with

the 512 bit message block. The output (hash) of the

first block is then added with the seed itself and the

sum then becomes the seed for the next seed itself,

and this sum then becomes the seed for the next

block. When the hash of the last block is completed

its value becomes the hash for the entire message.

Thus the seed for each block depends on the hash of

the previous block and hence block cannot be hashed

in parallel, but hashed in sequential fashion. At the

heart of MD5 algorithm are 4 auxiliary functions

each of which take has input three 32 bit words and

produce as output one 32 bit word. This auxiliary

function is used to perform the hashing for each of

the block in the entire message.

5) Output the hash.

Message digest produce for the entire message is the

output of the hash function when it is applied to the

last block in the message. This hash is a 128 bit

sequence, and works as message digest for the entire

 © 2014 JCT. ALL RIGHTS RESERVED 52

Journal of Computing Technologies (2278 – 3814) / # 52 / Volume 3 Issue 3

message. The strength of the MD5 algorithm arise

from the fact it is computational infeasible to produce

two message having the same message digest, or to

produce any message having a pre defined message

digest. Since the MD5 algorithm is designed to work

with 32 bit words, it is quite fast when run on 32 bit

machine.

Fig 2: Flow Chart

VI. CONCLUSION AND FUTURE SCOPE

Attacks on the internet are taking place due to the network

security problems, User might become victim of various

vulnerabilities of web without alerting them. This can lead to

stealing of sensitive information .In this paper we provide

security mechanism for both client and server Side. In Future

our work for content sniffing attack detection includes ways to

reduce the overhead for large files and to evaluate our

approach for some other file types. We convert the content

type of any file into HTML and Plan to find an automated

way to do so. The future work will also include the Automatic

detection of file uploads procedures to Integrate our filter.

A. References

[1] Adam Barth, Juan Caballero and Dawn Song , ―Secure Content

Sniffing for Web Browsers, or How to Stop Papers from

Reviewing Themselves‖, 2009 30th IEEE Symposium on Security

and Privacy

[2] Anton Barua, Hossain Shahriar, and Mohammad Zulkernine ,

―Server Side Detection of Content Sniffing Attacks‖, 2011 22nd

IEEE International Symposium on Software Reliability

Engineering

[3] Syed Imran Ahmed Qadri, Prof. Kiran Pandey, “Tag Based Client

Side Detection of Content Sniffing Attacks with File Encryption

and File Splitter Technique”, International Journal of Advanced

Computer Research (IJACR), Volume-2, Number-3, Issue-5,

September-2012

[4] Animesh Dubey, Ravindra Gupta, Gajendra Singh Chandel,‖ An

Efficient Partition Technique to reduce the Attack Detection Time

with Web based

[5] Misganaw Tadesse Gebre, Kyung-Suk Lhee and ManPyo Hong,

―A Robust Defence Against Content- Sniffing XSS Attacks‖,

IEEE 2010.

[6] Usman Shaukat Qurashi , Zahid Anwar, “AJAX Based Attacks:

Exploiting Web 2.0”,IEEE 2012.

[7] Y. Zhang, J. Hong, and L. Cranor, ―CANTINA: A Content-based

Approach Detecting Phishing Websites ,Proc. of the 16th

International Conference on World Wide Web (WWW),Banff,

Alberta, Canada, May 2007.

[8] M. Alalfi, J. Cordy, and T. Dean, ―WAFA: Fine-grained

Dynamic Analysis of Web Applications, Proc. of the 11th

International Symposium on Web Systems Evolution (WSE),

Edmonton, Canada, Sept 2009, pp. 41-50 .

[9] M. Gundy and H. Chen, ―Nonce spaces: Using Randomization to

Enforce Information Flow Tracking and Thwart Cross-site

Scripting Attacks,‖ Proc. of the 16th Annual Network and

Distributed System Security Symposium (NDSS), San Diego,

California, USA, February 2009.
[10] Y. Nadji, P. Saxena, and D. Song, ―Document Structure Integrity:

A Robust Basis for Cross site Scripting Defence, Proc. of the 16th

Annual Network and Distributed System Security Symposium

(NDSS), San Diego, California, USA, February 2009.

[11] T. Jim, N. Swamy, and M. Hicks, ―Defeating Script Injection

Attacks with Browser- Enforced Embedded Policies,‖ Proc. of the

16th International Conference on World Wide Web, Banff,

Alberta, Canada, May 2007, pp.601-610.

 © 2014 JCT. ALL RIGHTS RESERVED 53

Journal of Computing Technologies (2278 – 3814) / # 53 / Volume 3 Issue 3

