
MITIGATION OF SQL INJECTION ATTACKS
Pallavi Shinde

1
, Manasi Wavade

2
, Kalyani Mishra

3

Siddharth Mukhia
4
,
Mugdha Parande

5

Information Technology Department, Mumbai University

 Atharva College of Engineering,Malad,Mumbai,India

pallavi.shinde087@gmail.com, wavademanasi@gmail.com , mishra.kalyani48@gmail.com, sid.mukhia@gmail.com

parandemugdha@gmail.com

Abstract— Internet technologies has played a very important role

in easing the lives of humans in numerous ways, but the

drawbacks like the intrusions that are attached with the Internet

applications, sustains the growth of these applications. SQLIA

contributes 25% of the total Internet attacks. In this paper a

method is proposed to detect the SQL injection; where a Reverse

proxy is used to mitigate SQL Injection Attack using the

cleansing algorithm.

Keywords— SQL Injection , SQL attack, Security threats, Web

application vulnerability

I. INTRODUCTION

In the recent years, web applications have tended to become

common place. Nowadays there is a plethora of web

applications that cover a wide range of daily needs. A large

number of electronic transactions, including e-commerce, e-

banking, e-voting, e-learning, and e-health among others, can

be conducted online at any time and from any place. However,

in all these Internet applications exposed to hacking attempts,

security-related problems are a major issue. SQL injection

represents today the most common indirect attack technique

against web-powered databases and can disassemble

effectively the secrecy, integrity and availability of web

applications. SQL injection occurs when an attacker inserts

malicious SQL code into an SQL query by manipulating data

input into an application. This kind of vulnerability is a

serious threat to any web application that reads input from

users and uses it to build and execute SQL queries to an

underlying database. With SQL injection, the attacker can run

arbitrary SQL queries, extracting sensitive customer and order

information from e-commerce applications, or s/he can bypass

strong security mechanisms compromising the back-end

databases and the data server file system.

II. ILLUSTRATION OF A SIMPLE SQL ATTACK

The requirement of Safeguarding the Web Application can be

met by filtering all the requests before any transaction in the

database takes place or the user is able to access any sort of

sensitive data.

Fig. 1 Illustration of sample of SQL attack

SQL injection vulnerabilities allow attackers to insert SQL

commands as a part of user input [1]. When an SQL query is

constructed dynamically with maliciously-devised user input

containing SQL keywords, attackers can gain access or

modify critical information such as a credit card number in a

database without proper authorization.

However, an attacker can enter the input for the values of

login ID and password through a web form.

It would generate the following query:

SELECT info FROM account WHERE id = ‘1’ OR ‘1’ = ‘1’

AND password = ‘1’ OR ‘1’ = ‘1’;

Because the given input makes the WHERE clause in the SQL

statement always true (a tautology), the database returns all of

the user information in the table. Therefore, the malicious user

has been authenticated without a valid login ID and password.

Most Web applications used on the Internet or within

enterprise systems work this way and could therefore be

vulnerable to SQL injection. The cause of SQL injection

vulnerabilities is relatively simple and well understood:

insufficient validation of user input.

III. TYPES OF ATTACKS

The different types of attacks are generally not performed in

isolation; many of them are used together or sequentially,

depending on the specific goals of the attacker [13].

 © 2014 JCT. ALL RIGHTS RESERVED 66

Journal of Computing Technologies (2278 – 3814) / # 66 / Volume 3 Issue 3

mailto:pallavi.shinde087@gmail.com
mailto:wavademanasi@gmail.com
mailto:mishra.kalyani48@gmail.com
mailto:sid.mukhia@gmail.com
mailto:parandemugdha@gmail.com

A. Tautologies

1) Attack Intent: Bypass authentication, identifying inject

able parameters, extracting data.

2) Description: The general goal of a tautology-based attack is

to inject code in one or more conditional statement’s so that

they always evaluate to true. The consequences of this

attack depend on how the results of the query are used

within the application. An attacker exploits an injectable

field that is used in a query’s WHERE conditional.

The most common usages are to bypass authentication pages

and extract data thereby attack is successful when the code

either displays all of the returned records or performs some

action if at least one record is returned.

B. Illegal/Logically Incorrect Queries

1) Attack Intent: Identify inject able parameters, performing

database finger- printing, extracting data.

2) Description: This attack lets an attacker gather

important information about the type and structure of the

back-end database of a Web application. It is a

preliminary, information gathering step for other attacks. The

vulnerability leveraged by this attack is that the default error

page returned by application servers is often overly

descriptive. Errors messages are generated can often reveal

vulnerable/inject able parameters to an attacker. Syntax

errors can be used to identify injects able parameters.

C. Union Query

1) Attack Intent: Bypass Authentication, extracting data

2) Description: In union-query attacks, an attacker exploits a

vulnerable parameter to change the data set returned for a

given query. In this, an attacker trick the application into

returning data from a table different from the one that

was intended by the developer. Attackers do this by

injecting a statement of the form:

UNION SELECT <rest of injected query>.

The attacker can use that query to retrieve information from a

specified table as it can completely control the

second/injected query resulting into execution of the injected

second query on dataset.

D. Stored Procedures

1) Attack Intent: Perform privilege escalation, performing

denial of service, executing remote commands.

2) Description: SQLIAs of this type try to execute stored

procedures present in the database. Most databases have

standard set of stored procedures that extend the functionality

of the database and allow for interaction with the operating

system. Hence, an attacker can craft SQLIAs to execute stored

procedures provided by that specific database, including

procedures that interact with the operating system once

backend has been determined.

E. Piggybacked Queries

1) Attack Intent: Extract data, adding or modifying data,

performing denial of service, executing remote commands.

2) Description: In this, attacker tries to inject additional

queries into the original query. In this attackers are not trying

to modify the original intended query; instead, they are trying

to include new and distinct queries that “piggy-back” on the

original query resulting into database receiving multiple SQL

queries. Both the queries are executed one after another.

Vulnerability to this type of attack is often dependent on

having a database configuration that allows multiple

statements to be contained in a single string.

F. Alternate Encodings

1) Attack Intent: Evade detection.

2) Description: In this attack, the injected text is modified so

as to avoid detection by defensive coding practices and also

many automated prevention techniques. This attack type is

used in conjunction with other attacks. It is not a unique

way to attack an application; they are simply an enabling
technique that allows attackers to evade detection and

prevention techniques and exploit vulnerabilities that might

not otherwise be exploitable. These evasion techniques are

often necessary because a common defensive coding practice

is to scan for certain known “bad characters”.

IV. PROBLEM STATEMENT

The Existing System assumes that user input consists only of

values (numbers and strings) that are not meant to be

interpreted as SQL tokens. This technique cannot handle cases

in which the user input is legitimately supposed to add SQL

tokens to the query. Applications that allow the user to do so

would cause this technique to generate false positives because

we would recognize the user-introduced SQL tokens and

operators as an injection. Also the Existing Systems does not

check the URL signatures which can be changed by Attacker

during the SQLIA.

Thus, the Proposed System has the capability to mitigate both

the possible threats using Filter Application located at reverse

Proxy Server.

V. PROPOSED ARCHITECTURE

 © 2014 JCT. ALL RIGHTS RESERVED 67

Journal of Computing Technologies (2278 – 3814) / # 67 / Volume 3 Issue 3

Fig. 2 Proposed System Architecture

Working of System described as follow [2]:

Step1:

 The client sends the request to the Reverse proxy server.

Step 2:

The sanitizing application in the Reverse proxy server

extracts the URL Query String from the HTTP request and

the user data from the SQL statement.

 The filtering Application checks the URL signature

 If signature is benign

 Then

Continue

Set flag to true

 Else

Discard

Step 3:

The Application checks the authorisation of SQL statement in

prototype model.

 If the Statement is authorised

 Then

Continue

 Else

Discard

Step 5:

 User Input data is checked for reserved SQL keywords.

 If the Input data is benign

 Then

Input Data is hashed

 Else

 Discard

\

Step 6:

Encrypt the Input Data using hashing algorithm. Forward the

request and the flag to Web Application Server.

Step 7: If the hashed user data matches the stored hash value

in the database, then the data is retrieved and the user gains

access to the account.

Step 8:

 Else the user is denied access.

VI. SCOPE

The filtering application installed on the Reverse Proxy Server

provides basic solution for preventing unauthorised access to

the server thereby preventing any loss sensitive data. Thus, it

provides a secure gateway for Online Transaction for

Customers.

By blocking the unauthorised access it provides a way to

prevent the loss of business by securing the sensitive data

about the Clients which was vulnerable prior to the

implementation of security application.

VII. SANITIZING APPLICATION

Cleaning Algorithm:

Step 1:

 Extract the URL Query String from HTTP;

 Parse the URL into Tokens-toks;

 While (not empty of toks)

 Check if (URL = Benign using the signature check)

 Set the flag to continue;

 Else

 Set the flag to deny;

Step 2:

 Extract the SQL statement from the Query String;

 Tokenize the SQL Statement-q(array);

 While (not empty of q)

 Change Character Encoding to UTF;

 Add token to Array-sqlarr

 For (every data in prototype array)

 Check if (sqlarr= prototype model in document)

 Extract the user input data;

Step 3:

 Parse the user data into array-usrarr;

 While (not empty of usrarr)

 Check if every element in usrarr ≠ reserved SQL

Keyword

Else

Deny Request;

Step 4:

 For (every data in usrarr)

 Perform appropriate data encryption and store the

data in a UDA (User Defined Array).

Step 5:

 Send the encrypted user data and flag to Web

application Server;

 © 2014 JCT. ALL RIGHTS RESERVED 68

Journal of Computing Technologies (2278 – 3814) / # 68 / Volume 3 Issue 3

VIII. FLOW CHART OF THE SYSTEM

Fig. 3 Flowchart of the System

 .

IX. PERFORMANCE OF OUR SOLUTION

Fig. 4 Output Result after Defence Mechanism

X. CONCLUSION

In this paper, we have presented a survey on different types

of SQLIA and some of the important approaches for detection

and preventing of SQLIA. Our proposed technique will able to

suitably classify the attacks that performed on the applications

without blocking legitimate accesses to the database.

REFERENCES

[1] Y.Huang, F.Yu, C. Hang,C.H. Tsai, D.T.Lee and S.Y.Kuo, (2004)

“Securing Web Application Codeby Static Analysis and Runtime Protection”,

Proc. International World Wide Web Conference ’04, pp.

[2] Chip Andrews, “SQL Injection FAQs”,
http://www.sqlsecurity.com/FAQs/SQLInjectionFAQ/tabid/56/Default.aspx

[3] W. G. Halfond and A. Orso, (2005) “AMNESIA: Analysis and
Monitoring for NEutralizing SQLInjection Attacks”, Proc. ACM International

Conference on Automated Software Engineering ’05, pp.

[4] Zhendong Su and Gary Wassermann, (2006) “The Essence of Command

Injection Attacks in Web Applications”, Proc. ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages ’06, pp.372-382.

[5] D.Scott and R.Sharps, (2002) “Abstracting Application-level Web

Security”, Proc. International
Conference on the World Wide Web ‘02, pp. 396-407.

[6] S.W. Boyd and A.D. Keromytis, (2004) “SQLrand: Preventing SQL
Injection Attacks”, Proc. 2nd

Applied Cryptography and Network Security (ACNS) Conference, pp. 292-

302.

[7] W. Halfond, J. Vigeas and A.Orso, (2006) “A Classification of SQL

Injection Attacks and Counter
Measures”, Proc. International Symposium on Secure Software Engineering

’06.

[8] C.Gould, Z.Su and P.Devanbu, (2004) “JDBC Checker: A Static Analysis

Tool for SQL/JDBCApplication”, Proc. International Conference on Software

Engineering ‘04, pp.697-698.

 [9] Konstantinos Kemalis and Theodoros Tzouramanis, (2008) “SQL-IDS: a

specification-based approach for SQL-injection detection”, Proc. 2008 ACM
symposium on Applied computing, pp.2153 - 2158.

 © 2014 JCT. ALL RIGHTS RESERVED 69

Journal of Computing Technologies (2278 – 3814) / # 69 / Volume 3 Issue 3

http://www.sqlsecurity.com/FAQs/SQLInjectionFAQ/tabid/56/Default.aspx

