
Clustering XML Document and Interactive Fuzzy

Search
Asvany.T

1
, Jamaludeen.A

2
, SenthilKumaran.C

3

1
Assistant Professor, Department of MCA, CCET, Puducherry.asvanytandabani@gmail.com

2
Senior Assistant Professor, Department of MCA, CCET, Puducherry.jam.ahamath@gmail.com

3
Assistant Professor, Department of MCA, CCET, Puducherry.senthilmca81@gmail.com

Abstract—In a traditional keyword-search system over

XML data, a user composes a keyword query, submits it to the

system, and retrieves relevant answers. In the case where the

user has limited knowledge about the data, often the user feels

“left in the dark” when issuing queries, Cluster the data first and

has to use a try-and-see approach for finding information. study

interactive fuzzy search in XML documents, a new information-

access paradigm in which the system searches XML data on the

fly as the user types in query keywords. It allows users to explore

data as they type, even in the presence of minor errors of their

keywords. Our proposed method has the following features: 1)

Search as you type: It extends Auto complete by supporting

queries with multiple keywords in XML data. 2) Fuzzy: It can

find high-quality answers that have keywords matching query

keywords approximately. 3) Efficient: Our effective index

structures and searching algorithms can achieve a very high

interactive speed. I examine effective ranking functions and early

termination techniques to progressively identify the top relevant

answers. I have implemented our method on real data sets, and

the experimental results show that our method achieves high

search efficiency and result quality.

I. INTRODUCTION

The XML documents as rooted ordered labelled trees, we

study the usage of structural distance metrics in hierarchical

clustering algorithms to detect groups of structurally similar

XML Documents. We suggest the usage of tree structural

summaries to improve the performance of the distance

calculation and at the same time to maintain or even improve

its quality.

1.1 Clustering Approaches

Different algorithms have been proposed for

clustering XML documents that are extensions of the classical

hierarchical and partitioning clustering approaches. We

remind that agglomerative algorithms find the clusters by

initially assigning each document to its own cluster and then

repeatedly merging pairs of clusters until a certain stopping

criterion is met. The end result can be graphically represented

as a tree called a dendrogram. The dendrogram shows the

clusters that have been merged together, and the distance

between these merged clusters (the horizontal length of the

branches is proportional to the distance between the merged

clusters). By contrast, partitioning algorithms find clusters by

partitioning the set of documents into either a predetermined

or an automatically derived number of clusters. The collection

is initially partitioned into clusters whose quality is repeatedly

optimized, until a stable solution based on a criterion function

is found.

Hierarchical clustering in general produces clusters

of better quality but its main drawback is the quadratic time

complexity. For large documents, the linear time complexity

of partitioning techniques has made them more popular

especially in IR systems where the clustering is employed for

efficiency reasons.

Quality

Measure

Formula

Recall

and

precision

R(i,j)=

P(i,j)=

i– a class of the q classes

j – a cluster of the k

clusters

n – number of items

ni– items of class i

nj– items in cluster j

nij– items of class I in

cluster j
Entropy E(j)=-

Entropy=

 (j)

Purity Q(j)=

Purity=

 Q(j)

F-

measure

F(i,j)=

F=

 (i,j)

A Framework for Clustering XML Documents Our

purpose is to cluster XML files based on their structure we

achieve this by summarizing their structure in s- graphs and

using the metric. Our approach is implemented in two steps:

Step 1. Extract and encode structural information: This step

scans the documents, computes their s-graphs, and encodes

them in a data structure.

Step 2. Perform clustering on the structural information: This

 © 2014 JCT. ALL RIGHTS RESERVED 9

Journal of Computing Technologies (2278 – 3814) / # 9 / Volume 3 Issue 3

step applies a suitable clustering algorithm on the encoded

information to generate the clusters.

The above figure shows the Tree Distance between

Documnets.

This simple example shows that the tree distance based

method may not be able to distinguish structural differences in

some cases. In the following, we propose a new notion to

measure the similarity between XML documents. Given a set

of xml documents C, the structure graph (or s-graph) of C,

sg(c)=(N,E), is a directed graph such that N is the set of all the

elements and attributes in the documents in C and (a,b)€E if

and only if a is a parent element of element b or b is an

attribute of element a in some document in C.The structure

graph defined here is different from the DTD graph. The

below figure shows a example of s-graph.

The structure graphs are derived from XML documents, not

from their DTD. For example, the s-graph sg(doc1,doc2) of

two documents doc1 and doc2 is the set of nodes and edges

appearing in either document. The same manner, a path

expression q can be viewed as a graph(N,E),where N is the set

of elements or attributes in q and E is the set of element – sub

element or element – attribute relationships in q. Given a path

expression q which has an answer in an XML document X,

the directed graph representing q is a sub graph in the s-graph

of X. For simplicity we will denote the graph of a path

expression q also by q.

An example of s-graph based similarity

Search Introduction

Keyword search is a proven and widely accepted

mechanism for querying in textual document systems and the

World Wide Web. A keyword search looks for words

anywhere in the record. It is emerged as most effective

paradigm for discovering information on web. The advantage

of keyword search is its simplicity-users do not have to learn

complex query language and can issue query without any

knowledge about structure of xml document. The most

important requirement for the keyword search is to rank the

results of query so that the most relevant results appear.

Keyword search provides simple and user friendly

query interface to access xml data in web. Traditional methods

use query languages such as Xpath and XQuery to query

XML data. These methods are powerful but unfriendly to non

expert users. First, these query languages are hard to

comprehend for non-database users. For example, XQuery is

fairly complicated to grasp. Second, these languages require

the queries to be posed against the underlying, sometimes

complex, database schemas. Fortunately, keyword search is

proposed as an alternative means for querying XML data,

which is simple and yet familiar to most Internet users as it

only requires the input of keywords. One limitation of Auto

complete is that the system treats a query with multiple

keywords as a single string; thus, it does not allow these

keywords to appear at different places.

Keyword search over xml is not always the entire

document but deeply nested xml. Xml was designed to

transport and store data. Xml document contains text with

some tags which is organized in hierarchy with open and close

tag. Xml model addresses the limitation of html search engine

i.e. Google which returns full text document but the xml

captures additional semantics such as in a full text titles,

references and subsections are explicitly captured using xml

tags. For querying xml data keyword search is proposed as an

alternative method. While query semantics and algorithm
efficiency have been widely discussed, top-K keyword search

in XML databases is an important issue that very little work

has concentrated on. As is typical in the keyword search

systems, a ranking function can be defined [5], [13] to assign

to results ranking scores, and ranked results are returned to

users. Top-K processing aims to compute the results with

highest scores first so that execution can terminate earlier after

the top K results have been generated.

Existing algorithms focusing on efficiency cannot

provide effective support for top-K processing. These

 © 2014 JCT. ALL RIGHTS RESERVED 10

Journal of Computing Technologies (2278 – 3814) / # 10 / Volume 3 Issue 3

algorithms share some common characteristics: inverted lists

are sorted by the document order. At least one list is scanned

sequentially. This behaviour determines that results are

generated in the document order, rather than the order of

ranking scores. All the results must be generated in order to

return the top K results. Essentially, these algorithms are

designed to optimize the semantic pruning, and are incapable

of supporting top-K processing.

In traditional approach to query over xml data it

requires query languages such as XPath and XQuery which

are very hard to comprehend for non database users. It can

only understand by professionals. Recently database

community has been studying challenges related to keyword

search over xml data. However the traditional approaches are

not user friendly. To solve this problem many systems

introduced various features.

Let's say you have the following XML document

(table.xml)
<xml>

 <table>

 <rec id="1">

 <numField>123</numField>

 <stringField>String

Value</stringField>

 </rec>

 <rec id="2">

 <numField>346</numField>

 <stringField>Text

Value</stringField>

 </rec>

 <rec id="3">

 <numField>-23</numField>

<stringField>stringValue</stringField>

 </rec>

 </table>

</xml>

The main purpose is to develop Interactive Fuzzy

Search in XML Data. Interactive Fuzzy search searches the

XML data on the fly as user’s type in query keywords, even in

the presence of minor errors of their keywords. An interactive

search is a user interface interaction method to progressively

search for filter through text. As the user types text, one or

possible matches for text are found and immediately present

to user. The interactive fuzzy search in xml data returns the

approximate results.

Fig 1.1.1Architecture of an XML Document

One method is Auto complete which predicts the

words the user had typed in. One limitation of this approach is

it treats multiple key words as single keyword and do not

allow them to appear in different places. To address this

problem other method is proposed complete search in textual

documents which allows multiple keywords to appear in

different places but it does not allow minor mistakes in query.

In the above structure, an XML document contains

the parent-child relationships. Here bibliography is the root

element. Conference and Journal is the parent element for the

upcoming child element such as name, year, paper, chair, etc

and WWW, 2009, IR DB, Tom Mices are the xml datas for

the above mentioned child element.

Overview of Approach

There are two challenges to support fuzzy type-ahead

search in XML data. The first one is how to interactively and

efficiently identify the predicted words that have prefixes

similar to the input partial keyword after each keystroke from

the user. The second one is how to progressively and

effectively compute the top-k predicted answers of a query

with multiple keywords, especially when there are many

predicted words.

LCA-Based Interactive FUZZY SEARCH

The lowest common ancestor (LCA) is a concept in

graph theory and computer science. Let T be a rooted tree with

n nodes. The lowest common ancestor between two nodes v

and w is defined as the lowest node in T that has both v and w

as descendants.

The LCA of v and w in T is the shared ancestor of v

and w that is located farthest from the root. There are different

ways to answer the query on an xml document; one commonly

used method is LCA based method. Many algorithms that use

query over xml uses this method. Content nodes are the parent

node of the keyword. For example consider keyword db in fig

1.1.1 then content node of db is node 13 and node 16. The

server contains index structure of xml document which each

node is letter in keyword and leaf node contain all nodes that

contain the keyword this leaf node is called inverted list.

Algorithm

 © 2014 JCT. ALL RIGHTS RESERVED 11

Journal of Computing Technologies (2278 – 3814) / # 11 / Volume 3 Issue 3

1. function LCA(u)

2. MakeSet(u);

3. u.ancestor := u;

4. for each v in u.children do

5. LCA(v);

6. Union(u,v);

7. Find(u).ancestor := u;

8. u.colour := black;

9. for each v such that {u,v} in P do

10. if v.colour == black

11. print "Lowest Common Ancestor of " + u +" and " +

v + " is " + Find(v).ancestor + ".";

12. function MakeSet(x)

13. x.parent := x

14. x.rank := 0

15. function Union(x, y)

16. xRoot := Find(x)

17. yRoot := Find(y)

18. if xRoot.rank > yRoot.rank

19. yRoot.parent := xRoot

20. else if xRoot.rank < yRoot.rank

21. xRoot.parent := yRoot

22. else if xRoot != yRoot

23. yRoot.parent := xRoot

24. xRoot.rank := xRoot.rank + 1

25. function Find(x)

26. if x.parent == x

27. return x

28. else

29. x.parent := Find(x.parent)

30. return x.parent

For keyword query the LCA based method retrieves

content nodes in xml that are in inverted lists. Identify the

LCAs of content nodes in inverted list. Takes the sub tree

rooted at LCAs as answer to the query for example suppose

the user typed the query “www db” then the content nodes of

db are {13,16} and for www are 3 ,the LCAs of these content

nodes are nodes ,12,15,2,1.here the nodes 3,13,12,15 are more

relevant answers but nodes 2 and 1 are not relevant answers.

Fig 1.1.2: The extended tire

In the above structure, for each leaf node in the trie,

we index not only the content nodes for the keyword of the

leaf node, but also those quasi-content nodes whose

descendants contain the keyword. For instance, consider the

XML document in Fig. 1.1.1. For the keyword “DB,” we

index nodes 13, 16, 12, 15, 9, 2, 8, 1, and 5 for this keyword

as shown in Fig. 1.1.2. For the keyword “IR,” we index nodes

6, 16, 24, 5, 15, 23, 2, 20, and 1. For the keyword “Tom,” we

index nodes 14, 17, 12, 15, 9, 2, 8, 1, and 5. The nodes are

sorted by their relevance to the keyword.

 MINIMAL- COST TREE

To find relevant answers to a keyword query over an

XML document. In the framework, each node on the XML

tree is potentially relevant to the query with different scores.

For each node, we define its corresponding answer to the

query as its subtree with paths to nodes that include the query

keywords. This subtree is called the “minimal-cost tree” for

this node. Different nodes correspond to different answers to

the query, and we will study how to quantify the relevance of

each answer to the query for ranking.

Algorithm

1. scan index lists in parallel;

2. consider dj at position posi in Li;

3. E(dj) := E(dj) Є {i};

4. highi := si(q,dj);

5. bestscore(dj) := aggr{x1, ..., xm)

a. with xi := si(q,dj) for i Є E(dj),

b. highi for i Є E(dj);

6. worstscore(dj) := aggr{x1, ..., xm)

a. with xi := si(q,dj) for i Є E(dj), 0 for i Є

E(dj);

7. top-k := k docs with largest worstscore;

8. threshold := bestscore{d | d not in top-k};

9. if min worstscore top-k ≥ threshold then exit;

Sort the scores in the inverted lists. If the inverted list

is long the partial virtual inverted list. Construct max tree,

such that each node contain <node, score>. The top element of

max tree is highest score node and is deleted, max tree is

adjusted. Deleted node with score<=T (threshold) are taken

into result set and return the result set if the top – k answers

are retrieved. Consider the XML document and given a

keyword query Q = {DB; Tom; WWW}. Nodes 3, 13, 14, 16,

and 17 are content nodes of the three keywords; nodes 1, 2, 5,

8, 9, 12, and 15 are their quasi-content nodes. Node 3 is the

pivotal node for node 2 and “WWW”. Node 16 is the pivotal

node for node 2 and “DB”. Node 17 is the pivotal node for

node 2 and “Tom”. The MCT of node 2 is the subtree rooted

at node 2, which contains the paths: n2 n3, n2 n15

n16, and n2 n15 n17.

 © 2014 JCT. ALL RIGHTS RESERVED 12

Journal of Computing Technologies (2278 – 3814) / # 12 / Volume 3 Issue 3

CONCLUSION

The keyword search over the xml data which is user-

friendly and there is no need for the user to study about the

xml data .This paradigm gives the relevant results the user

wants. Fuzzy search over xml data is studied which gives

approximate results. In my project, various methods for

querying on xml data are used. I proposed effective index

structures, efficient algorithms, and novel optimization

techniques to progressively and efficiently identify the top

answers. I examined the LCA-based method to interactively

identify the predicted answers. I have developed a minimal-

cost-tree-based search method to efficiently and progressively

identify the most relevant answers. I have implemented our

method, and the experimental results show that our method

achieves high search efficiency and result quality.

References

[1] Jianhua Feng, and Guoliang Li,” Efficient Fuzzy Type-

 Ahead Search in XML Data”, VOL. 24, NO. 5, MAY

 2012.

[2] K. L. A. Nivedita, R. Naveen, K. Sravani, “Fuzzy Type-

 Ahead Search in XML Data”, Vol. 3, Issue 4, Jul-Aug

 2013, pp.1579-1583

[3] G. Li, J. Feng, and L. Zhou, “Interactive Search in Xml

 Data,” Proc. Int’l Conf. World Wide Web (WWW), pp.

 1063-1064, 2009.

[4] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy

 Keyword Search,” Proc. Int’l Conf. World Wide Web

 (WWW), pp. 371-380, 2009.

[5] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead

 Search on Relational Data: A Tastier Approach,” Proc.

 ACM SIGMOD Int’l Conf. Management of Data, pp. 695-

 706, 2009.

[6] Z. Bao, T.W. Ling, B. Chen, and J. Lu, “Effective XML

 Keyword Search with Relevance Oriented Ranking,” Proc.

 Int’l Conf. Data Eng. (ICDE), 2009.

[7] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: An

 Effective 3-in-1 Keyword Search Method for Unstructured,

 Semi-Structured and Structured Data,” Proc. ACM

 SIGMOD Int’l Conf. Management of Data, pp. 903-914,

 2008.

 © 2014 JCT. ALL RIGHTS RESERVED 13

Journal of Computing Technologies (2278 – 3814) / # 13 / Volume 3 Issue 3

