

Effect of Different UML Diagrams to Evaluate the

Size Metric for Different Software Projects
1Preety Verma Dhaka, 2Dr. Kavita

1Research Scholar, 2Associate Professor

Department of CS & IT

Jayoti Vidyapeeth Women’s University, Jaipur

Abstract: As we know that in Software Engineering, measuring

the software is an important activity. For measuring the software

appropriate metrics are needed. Using software metrics we are

able to attain the various qualitative and quantitative aspects of

software. Software Metrics are a unit of measurement to

measure the software in terms of quality, size, efforts, efficiency,

reliability, performance etc. Measures of specific attributes of the

process, project and product are used to compute software

metrics.

INTRODUCTION

The objectives of this research are to make an empirical

evaluation of software size metrics based on UML with the help

of two case studies and then calculate that empirical data

consisting of actual values and thereby showing that how the

software size metrics will be derived from an UML model via

Class Diagrams and the below listed interaction diagrams.

1. Activity Diagrams

2. State chart Diagrams

3. Component Diagrams

4. Collaboration Diagrams

For carrying out this research, two real case studies namely (i)

Virtual Class Room and (ii) Data Secrecy System will be taken for

practical evaluation. The UML modelling of these systems will

be done and the software size metrics of these systems will be

evaluated based on the UML models, using the non-functional

techniques (LOC, FP, and COCOMO-II).The metrics will be

specified using UML extension mechanism and then will be

calculated with the help of a tool. The estimated values will be

compared with the actual software. Thus, the aim of our

research is to evaluate the empirical value sets of UML models

and thereby, showing the use of various size metrics and

validate their extraction procedure from UML design with the

help of interaction diagrams.

PROPOSED METHODOLOGY

This work is using the UML diagrams to calculate the size

metrics. It has been found that existing researches focus on the

USE CASE to be the UML diagram for evaluation of the size

metric. Inclusion of the other UML diagrams in evaluation

process of the size metric has been proposed in this research.

The complete work is being carried in following steps:

1) Taken two case studies and their source code as the

input of this work

2) UML diagrams of the case studies has been drawn and

included for the evaluations of the size metric

3) Meta Mil software is being used to generate the XMI

document for evaluation of the size metric

4) Generated XMI file is used with the SD Metric tool for

evaluation of the metric values

5) For comparison purpose two other s ize metric

techniques have been used i.e. Lines of Codes and

Function Point Analysis

6) After evaluation of the metrics using various methods,

a chart of the all the metric values will be generated to

show the results.

The proposed work shall be carried out using the following

structural diagram:

Figure: Structural diagram of the proposed work

Unified Modeling Language (UML) is popular today for

capturing requirements and for describing the overall

architecture of a software-intensive system. One of the UML

constructs is a use case, which graphically depicts the way in

which a user will interact with the system to perform one

function or one class of functions. Three aspects of use cases

can be helpful as inputs to a size estimate: the number of use

cases, the number of actors involved in each use case, and the

number of scenarios. An actor is a person or system that

interacts with the system under consideration; typically, there is

Journal of Computing Technologies (2278 – 3814) / # 58 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 58

one actor per use case, but sometimes there are more. A

scenario is a potential outcome from using the software; the

number of scenarios can range from one to thousands or

millions, depending on the system and its complexity.

Figure: Characteristic Flow and Transformation Process Applied

in UML Designing Tool

This technique can be useful when the size estimate is required

after a UML specification is done. It can also be used as a

cross-check of another method; if the answers from both

methods are similar, the analysts may have more confidence in

the result.

Metrics of SDMetric

Metric NumAttr: The number of attributes in the class. The

metric counts all properties regardless of their type (data type,

class or interface), visibility, changeability (read only or not),

and owner scope (class-scope, i.e. static, or instance attribute).

Not counted are inherited properties, and properties that are

members of an association, i.e., that represent navigable

association ends.

Metric NumOps: The number of operations in a class. Includes

all operations in the class that are explicitly modelled (overriding

operations, constructors, destructors), regardless of their

visibility, owner scope (class-scope, i.e., static), or whether they

are abstract or not. Inherited operations are not counted.

Metric NumPubOps: The number of public operations in a

class. This is same as metric NumOps, but only counts

operations with public visibility. It measures the size of the class

in terms of its public interface.

Metric Setters: The number of operations with a name starting

with 'set'. Note that this metric does not always yield accurate

results. For example, an operation settle Account will be

counted as setter method.

Metric Getters: The number of operations with a name starting

with 'get', 'is', or 'has'. Note that this metric does not always yield

accurate results. For example, an operation isolate Node will be

counted as getter method.

Metric Nesting: The nesting level of the class (for inner

classes). Measures how deeply a class is nested within other

classes. Classes not defined in the context of another class have

nesting level 0, their inner classes have nesting level 1, etc.

Nesting levels deeper than 1 are unusual; an excessive nesting

structure is difficult to understand, and should be revised.

Metric IFImpl: The number of interfaces the class implements.

This only counts direct interface realization links from the class

to the interface. For example, if a class C implements an interface

I, which extends some other interfaces, only interface I will be

counted, but not the interfaces that I extends (even though

class c implements those interfaces, too).

Metric NOC: The number of children of the class (UML

Generalization). Similar to export coupling, NOC indicates the

potential influence a class has on the design. If a class has a

large number of children, it may require more testing of the

methods in that class. A large number of child classes may

indicate improper abstraction of the parent class.

Metric NumDesc: The number of descendents of the class

(UML Generalization). This counts the number of children of the

class, their children, and so on.

Metric NumAnc: The number of ancestors of the class. This

counts the number of parents of the class, their parents, and so

on. If multiple inheritances are not used, the metric yields the

same values as DIT.

Metric DIT: The depth of the class in the inheritance hierarchy.

This is calculated as the longest path from the class to the root

of the inheritance tree. The DIT for a class that has no parents is

0.Classes with high DIT inherits from many classes and thus

more difficult to understand. Also, classes with high DIT may

not be proper specializations of all of their ancestor classes.

Metric CLD: Class to leaf depth. This is the longest path from

the class to a leaf node in the inheritance hierarchy below the

class.

Metric OpsInh: The number of inherited operations. A large

number of child classes may indicate ion of the parent class.

The number of descendents of the class (UML Counts the

number of children of the class, their number of ancestors of the

class. parents of the class, their parents, and so on. If multiple

inheritances are not used, the metric yields the same values as

The depth of the class in the inheritance This is calculated as

the longest path from the root of the inheritance tree. The DIT

for a class that has no parents is 0.Classes with from many

classes and thus is more difficult to understand. Also, classes

with high DIT may not be proper specializations of Class to leaf

depth. The longest path from the class to a leaf node in the

inheritance hierarchy number of inherited operations. This is

calculated as the sum of metric NumOps taken over all ancestor

classes of the class.

Lines of Codes

This method attempts to assess the likely number of lines of

code in the finished software product. Clearly, an actual count

can be made only when the product is complete; lines of code

are often considered to be inappropriate for size estimates early

in the project life cycle. However, since many of the size-

estimation methods express size in terms of lines of code, we

can consider lines of code as a separate method in that it

expresses the size of a system in a particular way.

Journal of Computing Technologies (2278 – 3814) / # 59 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 59

Function Point Analysis

Function points were developed by Albrecht (1979) at IBM as a

way to measure the amount of functionality in a system. They

are derived from the requirements. Unlike lines of code, which

capture the size of an actual product, function points do not

relate to something physical but, rather, to something logical

that can be assessed quantitatively.

IFPUG FPA: Formal method to measure size of business

applications. It introduces complexity factor for size defined as

function of input, output, query, external input file and internal

logical file.

All Components are rated as Low, Average or High

After the components have been classified as one of the five

major components (EI‟s, EO‟s, EQ‟s, ILF‟s or EIF‟s), a ranking of

low, average or high is assigned. For transactions (EI‟s, EO‟s,

EQ‟s) the ranking is based upon the number of files updated or

referenced (FTR‟s) and the number of data element types

(DET‟s). For both ILF‟s and EIF‟s files the ranking is based upon

record element types (RET‟s) and data element types (DET‟s). A

record element type is a user recognizable subgroup of data

elements within an ILF or EIF. A data element type is a unique

user recognizable, non recursive, field.

Each of the following tables assists in the ranking process (the

numerical rating is in parentheses). For example, an EI that

references or updates 2 File Types Referenced (FTR‟s) and has 7

data elements would be assigned a ranking of average and

associated rating of 4. Where FTR‟s are the combined number of

Internal Logical Files (ILF‟s) referenced or updated and External

Interface Files referenced.

Table 3.1: EI Table

FTR’s

DATA ELEMENTS

1-4 5-15 >15

0-1 LOW Low Average

2 LOW Average High

3 or

More
Average High High

Table 3.2: Shared EO and EQ Table

FTR’s

DATA ELEMENTS

1-5 6-19 >19

0-1 LOW Low Average

2-3 LOW Average High

> 3 Average High High

Table 3.3: Values for transactions

Rating

VALUES

EO EQ EI

Low 4 3 3

Average 5 4 4

High 7 6 6

Like all components, EQ‟s are rated and scored. Basically, an EQ

is rated (Low, Average or High) like an EO, but assigned a value

like and EI. The rating is based upon the total number of

unique (combined unique input and out sides) data elements

(DET‟s) and the file types referenced (FTR‟s) (combined unique

input and output sides). If the same FTR is used on the input

and output side, then it is counted only one time. If the same

DET is used on the input and output side, then it is only

counted one time.

For both ILF‟s and EIF‟s the number of record element types

and the number of data elements types are used to determine a

ranking of low, average or high. A Record Element Type is a user

recognizable subgroup of data elements within an ILF or EIF. A

Data Element Type (DET) is a unique user recognizable, non

recursive field on an ILF or EIF.

Table 3.4: Table used to evaluate Rating of EI, EO, EQ

RET’s

DATA ELEMENTS

1-19 20-50 > 50

1 Low Low Average

2-5 Low Average High

>

5
Average High High

 Table 3.5: Values for transactions for ILF & EIF

Rating

VALUES

ILF EIF

Low 4 3

Average 5 4

High 7 6

Journal of Computing Technologies (2278 – 3814) / # 60 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 60

The counts for each level of complexity for each type of

component can be entered into a table such as the following

one. Each count is multiplied by the numerical rating shown to

determine the rated value. The rated values on each row are

summed across the table, giving a total value for each type of

component. These totals are then summed across the table,

giving a total value for each type of component. These totals

are then summed down to arrive at the Total Number of

Unadjusted Function Points.

The value adjustment factor (VAF) is based on 14 general

system characteristics (GSC's) that rate the general functionality

of the application being counted. Each characteristic has

associated descriptions that help determine the degrees of

influence of the characteristics. The degrees of influence range

on a scale of zero to five, from no influence to strong influence.

The IFPUG Counting Practices Manual provides detailed

evaluation criteria for each of the GSC'S, the table below is

intended to provide an overview of each GSC. Rate each factor

(Fi, i=1 to14) on a scale of 0 to 5:

 Table 3.6: General System Characteristics

F1. Does the system require reliable backup

and recovery?

F2. Are data communications required?

F3. Are there distributed processing

functions?

F5. Will the system run in an existing, heavily

utilized operational environment?

F6. Does the system require on-line data

entry?

F7. Does the on-line data entry require the

input transaction to be built over multiple screens or

operations?

F8. Are the master files updated on-line?

F9. Are the inputs, outputs, files or inquiries

complex?

F10. Is the internal processing complex?

F11. Is the code designed to be reusable?

F12. Are conversion and installation included in

the design?

F13. Is the system designed for multiple

installations in different organizations?

F14. Is the application designed to facilitate

change and ease of use by the user?

Once all the 14 GSC‟s have been answered, they should be

tabulated using the IFPUG Value Adjustment Equation (VAF) --

14

 VAF = 0.65 + [(Ci) / 100] .i = is from 1 to 14 representing each

GSC.

where: Ci = degree of influence for each General System

Characteristic

The final Function Point Count is obtained by multiplying the

VAF times the Unadjusted Function Point (UAF).

 FP = UAF * VAF

Summary of benefits of Function Point Analysis

Function Points can be used to size software applications

accurately. Sizing is an important component in determining

productivity (outputs/inputs).

They can be counted by different people, at different times, to

obtain the same measure within a reasonable margin of error.

Function Points are easily understood by the non technical

user. This helps communicate sizing information to a user or

customer.

Function Points can be used to determine whether a tool, a

language, an environment, is more productive when compared

with others.

3.1 COCOMO-II

The COCOMO II model makes its estimates of required effort

(measured in Person-Months – PM) based primarily on your

estimate of the software project's size (as measured in

thousands of SLOC, KSLOC):

Effort = 2.94 * EAF * (KSLOC)
E
 ... (3)

Where EAF Is the Effort Adjustment Factor derived from the

Cost Drivers. E Is an exponent derived from the five Scale

Drivers. As an example, a project with all Nominal Cost Drivers

and Scale Drivers would have an EAF of 1.00 and exponent, E,

of 1.0997. Assuming that the project is projected to consist of

8,000 source lines of code, COCOMO II estimates that 28.9

PersonMonths of effort is required to complete it: Effort = 2.94 *

(1.0) * (8)
1.0997

 = 28.9 Person-Months

MAINTAINABILITY

In engineering, maintainability is the ease with which a product

can be maintained in order to:

 isolate defects or their cause,

 correct defects or their cause,

 repair or replace faulty or worn-out components

without having to replace still working parts,

 prevent unexpected breakdowns,

 maximize a product's useful life,

 maximize efficiency, reliability, and safety,

 meet new requirements,

 make future maintenance easier, or

Journal of Computing Technologies (2278 – 3814) / # 61 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 61

 Cope with a changed environment.

In some cases, maintainability involves a system of continuous

improvement - learning from the past in order to improve the

ability to maintain systems, or improve reliability of systems

based on maintenance experience.

Software maintenance costs result from modifying your

application to either support new use cases or update existing

ones, along with the continual bug fixing after deployment. As

much as 70-80% of the Total Ownership Cost (TCO) of the

software can be attributed to maintenance costs alone!

Software maintenance activities can be classified as:

 Corrective maintenance – costs due to modifying

software to correct issues discovered after initial

deployment (generally 20% of software maintenance

costs)

 Adaptive maintenance – costs due to modifying a

software solution to allow it to remain effective in a

changing business environment (25% of software

maintenance costs)

 Perfective maintenance – costs due to improving or

enhancing a software solution to improve overall

performance (generally 5% of software maintenance

costs)

 Enhancements – costs due to continuing innovations

(generally 50% or more of software maintenance costs)

 Since maintenance costs eclipse other software

engineering activities by large amount, it is imperative

to answer the following question:

Measuring software maintainability is non-trivial as there is no

single metric to state if one application is more maintainable

than the other and there is no single tool that can analyze your

code repository and provide you with an accurate answer either.

There is no substitute for a human reviewer, but even humans

can‟t analyze the entire code repositories to give a definitive

answer. Some amount of automation is necessary.

So, how can you measure the maintainability of your

application? To answer this question let‟s dissect the definition

of maintainability further. Imagine you have access to the

source code of two applications – A and B. Let‟s say you also

have the super human ability to compare both of them in a small

span of time. Can you tell, albeit subjectively, whether you think

one is more maintainable than the other? What does the

adjective maintainable imply for you when making this

comparison – think about this for a second before we move on.

Done? So, how did you define maintainability? Most software

engineers would think of some combination of testability,

understand ability and modifiability of code, as measures of

maintainability. Another aspect that is equally critical is the

ability to understand the requirement, the “what” that is

implemented by the code, the “how”. That is, is there a mapping

from code to requirements and vice versa that could be

discerned from the code base itself? This information may exist

externally as a traceability document, but even having some

information in the source code – either by the way it‟s laid out

into packages/modules, naming conventions or having

READMEs in every package explaining the role of the classes,

can be immensely valuable.

These core facets can be broken down further, to gain further

insight into the maintainability of the application:

1) Testability – the presence of an effective test harness;

how much of the application is being tested, the types

of tests (unit, integration, scenario etc.,) and the

quality of the test cases themselves?

2) Understandability – the readability of the code; are

naming conventions followed? Is it self-descriptive

and/or well commented? Are things (e.g., classes)

doing only one thing or many things at once? Are the

methods really long or short and can their intent be

understood in a single pass of reading or does it take a

good deal of screen staring and whiteboard analysis?

3) Modifiability – structural and design simplicity; how

easy is it to change things? Are things tightly or

loosely coupled (i.e., separation of concerns)? Are all

elements in a package/module cohesive and their

responsibilities clear and closely related? Does it have

overly deep inheritance hierarchies or does it favor

composition over inheritance? How many independent

paths of execution are there in the method definitions

(i.e., cycolmatic complexity)? How much code

duplication exists?

4) Requirement to implementation mapping and vice versa

– how easy is it to say “what” the application

issupposed to do and correlate it with “how” it is being

done, in code? How well is it done? Does it need to be

refactored and/or optimized? This information is

paramount for maintenance efforts and it may or may

not exist for the application under consideration,

forcing you to reverse engineer the code and figure out

the „what‟ yourself.

Those are the four major dimensions on which one

can measure maintainability. Each of the facets can (and is)

broken down further for a more granular comparison. These may

or may not be the exact same ones that you thought of, but

there will be a great deal of overlap. Also, not every criterion is

equally important. For some teams, testability may trump

structural/design simplicitly. That is, they may care a lot more

about the presence of test cases (depth and breadth) than deep

inheritance trees or a slightly more tightly coupled design. It is

thus vital to know which dimension of maintainability is more

important for your maintenance team when measuring the

quality of your application and carry out the reviews and

refactoring with those in mind.

The table below, towards the end of the article, shows a detailed

breakdown of the above dimensions of maintainability and

Journal of Computing Technologies (2278 – 3814) / # 62 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 62

elaborates on their relevance to measuring the quality of the

source code [2]:

1) Correlation with quality: How much does the metric

relate with our notion of software quality? It implies

that nearly all programs with a similar value of the

metric will possess a similar level of quality. This is a

subjective correlational measure, based on our

experience.

2) Importance: How important is the metric and are low or

high values preferable when measuring them? The

scales, in descending order of priority are: Extremely

Important, Important and Good to have

3) Feasibility of automated evaluation: Are things fully or

partially automable and what kinds of metrics are

obtainable?

4) Ease of automated evaluation: In case of automation

how easy is it to compute the metric? Does it involve

mammoth effort to set up or can it be plug-and-play or

does it needs to be developed from scratch? Any OTS

tools readily available?

5) Completeness of automated evaluation: Does the

automation completely capture the metric value or is it

inconclusive, requiring manual intervention? Do we

need to verify things manually or can we directly rely

on the metric reported by the tool?

6) Units: What units/measures are we using to quantify

the metric?

DECISION TREE

Decision Trees are excellent tools for helping you to choose

between several courses of action.

They provide a highly effective structure within which you can

lay out options and investigate the possible outcomes of

choosing those options. They also help you to form a balanced

picture of the risks and rewards associated with each possible

course of action.

Drawing a Decision Tree

You start a Decision Tree with a decision that you need to make.

Draw a small square to represent this towards the left of a large

piece of paper.

From this box draw out lines towards the right for each possible

solution, and write that solution along the line. Keep the lines

apart as far as possible so that you can expand your thoughts.

At the end of each line, consider the results. If the result of

taking that decision is uncertain, draw a small circle. If the result

is another decision that you need to make, draw another square.

Squares represent decisions, and circles represent uncertain

outcomes. Write the decision or factor above the square or

circle. If you have completed the solution at the end of the line,

just leave it blank.

Starting from the new decision squares on your diagram, draw

out lines representing the options that you could select. From

the circles draw lines representing possible outcomes. Again

make a brief note on the line saying what it means. Keep on

doing this until you have drawn out as many of the possible

outcomes and decisions as you can see leading on from the

original decisions.

Once you have done this, review your tree diagram. Challenge

each square and circle to see if there are any solutions or

outcomes you have not considered. If there are, draw them in. If

necessary, redraft your tree if parts of it are too congested or

untidy. You should now have a good understanding of the

range of possible outcomes of your decisions.

RESULT AND DISCUSSION

Results of the Proposed UML Diagram Based Metric

Calculation & Count of Operations in Actual Software

CASE STUDY UML DESIGN

METRIC

NUMOPSCLS

VALUE

ACTUAL

SOFTWARE

OPERATIONS

COUNT

DSS 1 1

VCR 12 12

Figure: Graph showing comparison of the number of operations

evaluated using two different methods

Table: Average Permissible Error obtained from the Proposed

Algorithms and Other Techniques

Algorithm Average Permissible Error

LOC 27.5

FPA 7.5

UML Tools 3.5

Journal of Computing Technologies (2278 – 3814) / # 63 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 63

Figure : Graph showing Average Permissible Error in Percent for

the different techniques

CONCLUSION

This work has been done to evaluate the effect of different UML

diagrams to evaluate the size metric for the software projects.

Size metric is a valuable measurement in defining the cost of the

software. In this work different UML diagrams such as

collaboration diagram, state flow chart, activity diagram, us e

case, component diagram are used together to evaluate the

software size metric. For confirmation and proof two other

techniques of lines of codes (LOC) and function point analysis

(FPA) have been applied to measure the software size metrics.

From the results obtained from the output of SD Metric Tool,

LOC and FPA, it is found that the results obtained from the

inclusion of the different UML diagrams and most accurate and

matches with the actual software source code.

REFERENCES

[1]. Pressman S. Roger ”Software Engineering” Sixth Edition,

McGraw Hill International 2005, pg649, chap 22, ISBN : 007-124083-

7.

[2]. Rumbaugh James, Jacobson, Ivar and Booch Grady, “The Unified

Modeling Language User Guide” Second Edition2008, pg 5, chap1,

ISBN: 978-81-317-1582-6.

[3]. http://www.uml.org

[4]. Jacobson Magnus Christerson , Patrick Jonsson ,Gunnar

Overgaard” Object-oriented Software Engineering” 2008, pg 66, chap3,

Isbn: 81-317-0408-4.

[5]. Yi Tong et. al,

”A Comparison of Metrics for UML Class

Diagrams” ACM SIGSOFT Software Engineering Notes Page 1,

September 2004, Volume 29 .

[6]. Li Wei et .al, ”An Empirical Validation of Object-Oriented Metrics

in Two Different Iterative Software Processes” IEEE Transactions On

Software Engineering , November 2003 ,Volume 29 NO. 11, 1043.

[7]. Mitchell Aine et. al , ”Toward a definition of run-time object-

oriented metrics” 7TH ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software Engineering , 2003.

[8]. Xenos M. et al., ”Object-oriented metrics – a survey” Proceedings

of the FESMA 2000, Federation of European Software Measurement

Associations, Madrid, Spain, 2000.

[9]. arasimhan Lakshmi.V et.al, ” Evaluation of a Suite of Metrics for

Component Based Software Engineering (CBSE)” Issues in Informing

Science and Information Technology Volume 6, 2009.

[10]. Shaik Amjan et.al , ” Metrics for Object Oriented Design

Software Systems: A Survey” Journal of Emerging Trends in

Engineering and Applied Sciences (JETEAS) 1 (2): 190-198 c,

2010.Jahan Vafaei et.al ,” A New Method Software Size Estimation

based on UML Metrics”.

[11]. Chen Yue , Boehm Barry et.al ,”An Empirical Study of eServices

Product UML Sizing Metrics.

[12]. Linda Edith P et. al ,” Metrics for Component based

Measurement Tools”, International Journal of Science & Engineering

,Research Volume 2,Issue 5,May -2011

[13]. Subramanyam Ramanath et al, ”Empirical Analysis of CK

Metrics for Object-oriented Design Complexity: Implications for

Software Defects”, IEEE Transactions on Software Engineering , Vol.

29. NO.4 , April 2003.

[14]. Tegarden P. David et al., ”Effectiveness of Traditional Software

Metrics for Object-Oriented Systems”

[15]. Doban Orysolya et. al ,”Cost Estimation Driven Software

Development Process”

[16]. Lavazza Luigi et al .,”Using Function Point in the Estimation of

Real-Time Software: an Experience”, Proceedings 5th Software

Measurement European Forum, Milan 2008.

[17]. Chidamber et al., ”Managerial use of metrics for Object-oriented

software: an exploratory analysis”, IEEE

Journal of Computing Technologies (2278 – 3814) / # 64 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 64

