
Enhancing the Mapreduce Using Cache in Hadoop for

Big Data Analytics
J. Janani

#1
, K. Kalaivani

#2

1M.E student, Department of Computer Science, Arasu Engineering College, Kumbakonam ,
2 Assistant Professor, Department of Computer Science, Arasu Engineering College, Kumbakonam.

1jananijagadeesan1991@gmail.com

2kalai4best@gmail.com

Abstract----Hadoop is an open-source framework that
supports the processing of massive volume of datasets in

a distributed environment. Big data and hadoop are the

catch-phrases for describing the storage and processing

of huge amount of data, where zeta bytes of

unstructured data and updates are constantly arriving,
that cannot be mined efficiently by the traditional tools

and methods. MapReduce is the first MapReduce-

based solution that efficiently supports incremental

iterative computation, which is widely used in data

mining applications. MapReduce utilizes key-value

pair incremental processing rather than task level re-

computation. In this paper, an extension to MapReduce

using in-memory for mining big data has been

proposed. Compared with the work of MapReduce ,

MapReduce using in-memory performs key-value pair

level processing in map phase based on the mining

results of iterative algorithms, cache the mapped data in
the buffer that reduces the I/O workload of the reducer

phase. Mapreduce using cache is enhanced in hadoop

environment and uses the hadoop cache as a buffer to

store the intermediate data. The evaluation of

MapReduce task for the mobile datasets using the
iterative algorithm and cache memory has been

retrieved fast and executed in time.

Index terms: MapReduce, bigdata, incremental

processing, in-memory.

I. INTRODUCTION

A. Big Data

Big data is an evolving term that describes any

voluminous amount of structured, semi-structured

and unstructured data in areas includ ing internet

search, social network, finance, business informat ics,

health care, environment and education. Mining of

such big data are become popular in order to gain

better performance and quality services . Big Data as

the name describes a large data sets that is growing

beyond the ability to manage and analysis using with

the traditional data processing tools. Big data

represents large and incremental volume of

informat ion that is mostly untapped by existing data

warehousing systems and other analytical

applications. These data is being gathered from

different sources like web search, mobile devices,

software logs, cameras, etc. As of 2012 2.5 Exabyte

data created by every day and the size of the growth

gets doubled by every next year. The main

characteristics of BigData are Volume, Variety,

Velocity, Variab ility, Veracity and Complexity. This

describes the data is big in Volume, has mult iple

categories, speed of gathering data to meet the

requirement, consistency/quality of the data and the

complexity in collecting, processing the data to get

the required in formation. There are much architecture

used in BigData and Google introduced a new

process called „MapReduce‟, which allocates the

tasks parallel to the nodes and collect, which is a very

successful framework. Later this framework was

adopted by Apache open source project called

Hadoop. Larger organizations interested in capturing

the data to add significant values like the business.

Big Data is mostly used in Retail, Banking,

Government, Real estate, Science and research

sectors. This helps in decision making, cost/time

reduction, market analysis etc.

B. Hadoop

It is an open source platform for storage and

processing of diverse data types that enables data

driver enterprises to rapidly derive the complete

value from all their data.The original creators of

Hadoop are Doug cutting (used to be at Yahoo! now

at Cloudera) and Mike Cafarella (now teaching at the

University of Michigan in Ann Arbor). Doug and

Mike were build ing a project called “Nutch” with the

goal of creating a large Web index. They saw the

MapReduce and GFS papers from Google, which

were obviously super relevant to the problem Nutch

and were trying to solve. They integrated the

concepts from MapReduce and GFS into Nutch; then

later these two components were pulled out to form

the genesis of the Hadoop project. The name

“Hadoop” itself comes from Doug‟s son, he just

Journal of Computing Technologies (2278 – 3814) / # 88 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 88

mailto:1jananijagadeesan1991@gmail.com
mailto:2kalai4best@gmail.com

made the word up for a yellow p lush elephant toy

that he has. Yahoo! hired Doug and invested

significant resources into growing the Hadoop

project, in itially to store and index the Web for the

purpose of Yahoo! Search. That said, the technology

quickly mushroomed throughout the whole company

as it proved to be a big hammer that can solve many

problems. In the recent years, lots of frameworks [1],

[2], [3], [4], [5] have been developed for big data

analytics. From those frameworks, MapReduce [1], is

the most widely used framework for the simplicity,

generality and maturity with open source

implementation such as hadoop. In this paper, we

improve the efficiency of MapReduce using the

cache memory.

Big data is data, when grows as the technology

advances constantly. As new data and updates are

constantly arriv ing, the mining of those data are

complex by the traditional tools and methods.

Refresh periodically to store the mining results up-to-

date. E.g., Page Rank algorithm [6] estimates the

ranking scores of the web pages based on the search

of the web contents. For every search, web graph

structures are constantly evolved. The results of page

rank become stale and it decreases the quality of the

web content search. Therefore, it is important to

refresh the Page Rank estimation in a regular interval.

Incremental processing is an efficient approach to

refresh those mining results. If the size of the input is

large, the processing of those big data is very

expensive.

C. MapReduce Overview

Fig 1: MapReduce workflow

The MapReduce framework has two parts: A

function called Map, which takes a kv-pair <k1,v1>

as input and computes zero or more intermediate kv-

pairs <k2,v2>s. Then all <K2,v2>s are grouped by

K2. A function called Reduce, which takes a K2 and

list of {v2} as input and computes the reduced final

output kv-pairs <k3, v3>s explains in fig 1. A

MapReduce is heart of Hadoop, it usually reads the

input data of the MapReduce function and computes

the final results to the HDFS (Hadoop Distributed

File System), which div ides a file into equal-sized of

64MB blocks in a cluster environment.

D. Distributed Cache

Distributed Cache is a facility provided by the Map-

Reduce framework to cache files (text, archives, jars

etc.) needed by applications. Applications specify the

files, via urls (hdfs:// or http://) to be cached via the
jobconf. The Distributed Cache assumes that the files

specified via urls are already present on the File

System at the path specified by the url and are

accessible by every machine in the cluster. The

framework will copy the necessary files on to the

slave node before any tasks for the job are executed

on that node. Its efficiency stems from the fact that

the files are only copied once per job and the ability

to cache archives which are un-archived on the

slaves. Distributed Cache can be used to distribute

simple, read-only data/text files and/or more complex

types such as archives, jars etc. Archives (zip, tar and

tgz/tar.gz files) are un-arch ived at the slave nodes.

Jars may be optionally added to the classpath of the

tasks, a rudimentary software distribution

mechanis m. Files have execution permissions. In

older version of Hadoop Map/Reduce users could

optionally ask for symlinks to be created in the

working directory of the child task. In the current

version symlinks are always created. If the URL does

not have a fragment the name of the file or directory

will be used. If mult iple files or directories map to the

same link name, the last one added, will be used. All

others will not even be downloaded. Distributed

Cache tracks modification timestamps of the cache

files. Clearly the cache files should not be modified

by the application or externally while the job is

executing.

II. RELATED WORK

Iterative processing. A number of distributed

frameworks have recently emerged for big data

processing [2], [4], [5]. We discuss the frameworks

that improve MapReduce. HaLoop [9], a modified

version of Hadoop, improves the efficiency of

iterative computation by making the task scheduler

loop aware and by employing caching mechanis ms.

iMapReduce [10] supports iterative processing by

directly passing the Reduce outputs to Map and by

distinguishing variant state data from the static data.

iMapReduce allows users to specify the iterative

operations with map and reduce functions, while

supporting the iterative processing automatically

without the need of users‟ involvement. More

importantly, iMapReduce significantly improves the

performance of iterative algorithms by reducing the

overhead of creating a new task in every iteration,

eliminating the shuffling of the static data in the

shuffle stage of MapReduce, and allowing

Journal of Computing Technologies (2278 – 3814) / # 89 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 89

asynchronous execution of each iteration, i.e., an

iteration can start before all tasks of a previous

iteration have finished. i2MapReduce[11] improves

upon these previous proposals by supporting an

efficient general purpose iterative model. Pregel [3]

follows the Bulk Synchronous Processing

(BSP)model. The computation is broken down into a

sequence of super steps. In each super step,a

Compute function is invoked on each vertex. It

communicates with other vertices by sending and

receiving messages and performs computation for the

current vertex.This model can efficiently support a

large number o f iterat ive graph algorithms.

Compared to i2MapReduce, the BSP model in Pregel

is quite different from the MapReduce programming

paradigm. It would be an interesting future work to

exploit similar ideas in this paper to support

incremental processing in Pregel-like systems.

Incremental processing for one-step application.

Besides Incoop [7], several recent studies aim at

supporting incremental processing for one-step

applications. In contrast, i2MapReduce exp loits a

fine-grain kv-pair level re-computation that is more

advantageous. Incremental processing for iterative

application. In comparison, we extend the widely

used MapReduce model for incremental iterat ive

computation. Existing Map- Reduce programs can be

slightly changed to run on mapreduce using cache for

incremental p rocessing. Incoop detects changes to the

inputs and enables the automatic update of the

outputs by employing an efficient, fine-grained result

reuse mechanism. To achieve efficiency without

sacrificing transparency, they adopt recent advances

in the area of programming languages to identify

systematically the shortcomings of task level

memorizat ion approaches, and address them using

several novel techniques such as a storage system to

store the input of consecutive runs, a contraction

phase that make the incremental computation of the

reduce tasks more efficient, and a scheduling
algorithm for Hadoop that is aware of the location of

previously computed results.

 III. PROPOSED SYSTEM

A. Problem Statement

We consider the MapReduce approach in big data

processing, where the data sets are stored in the

cluster environment. MapReduce approach is used

for mining big data. In optimized MapReduce using

cache for big data analytics, it extracts the URL from

online dynamic websites and it converts it into the

data. In the Map phase, it Map the data based on the

<key,value> pair and store it in cache. The cached

data are partitioned and then combine in this phase.

In the reduce phase, the output data from map phase

are merged and sorted and then given as input to the

reducer to get an optimized output data. MapReduce

based on cache reduces the I/O workload in the

reduce function.

B. Proposed Methodology

Fig 2: Architecture diagram

Mapreduce is the framework for the processing of big

data; we propose an extension to i2mapreduce based

on the in-memory concept. First of all, mine the URL

of the mobile datasets from the dynamic websites

using the URL extractor. After the extraction, the

URL are sent to the URL splitter, it splits the URL

and converts it into content based on the annotations.

The splitted data are mapped with the key-value pair

and stores it in the defined cache memory. The

cached items, (i.e) the intermediate data from

multip le maps are managed by the cache manager.

Then the cached data are partitioned and combined

based on the key-value pair, merges the data based on

the partition involved in the multip le map phase.

Finally the cached intermediate data are sent to the

reduce phase, the process reduces the i/o workload of

the reducer phase. The reducer decreases the size of

the data based on the intermediate key. The

informat ion needed by the user is extracted from the

dynamic mobile datasets by the mapreduce process.

The above process is clearly illustrated in the fig 2.

III CACHE DESCRIPTION

Input: First the input data are split into fixed number

of pieces and then they are feed to different workers

(data nodes) in the mapreduce environment. Records

are individual data items. Each worker process the

input file as per the user program.

Map phase: In this phase, each input split is fed to

the mapper who has the function map (). This map ()

has the logic on how to process the input data. For

Journal of Computing Technologies (2278 – 3814) / # 90 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 90

example, map () is containing the logic to count the

occurrence of each word and each occurrence is

captured and arranged as (Key, value) pairs. After

processing the intermediate results are stored in the

data node‟s hard disk.

Fig 3: Data flow in hadoop system

Cache management phase: Cache manager works

as a centralized system. All the unique input and

output data performed by clients are feed in to the

cache manager. The data in cache is stored as a log

which contains the input and the place where the

output is availab le. Each client checks the cache

before it starts the functioning. If the cache contains

that task then the client machine can easily retrieve

informat ion from it, else the cache accept data from

the client. Cache prevents the occurrence of repeated

tasks. Thus it decreases the Processing time of

system.

Cache request and reply protocol: We use cache

request and reply protocol to get the results that are

stored in data nodes. Before processing the splits, the

data node sends the request to Cache Manager. All

the unique input and output data performed by clients

are feed to the cache manager. The data is stored as a

log in cache which contains the input and the place

where the output is available. Each client checks the

cache before it starts the functioning. If the cache

contains that task then the client machine can easily

retrieve information from it, else the cache accept

task from the client. If data is already processed, the

Cache Manager sends the positive reply to the data

node. Otherwise send the negative reply. If negative

reply obtained, the data node do the process on the

split file . If positive reply obtained, the data node

need not process the splits. So, no need to process the

repeated data. Cache Manager ensures the repeated

input split files need not process more than one time.

Finally all the intermediate files are reduced by data

node and the final result is stored in Name node.

Reduce phase: In this step, for each unique key, the

framework calls the application's Reduce () function.

The Reduce can iterate through the values that are

associated with that key and produce zero or more

outputs. In the word count example, the input value is

taken by reduce function, sums them and generates a

single output of the word and the final sum. The

output of the Reduce is writ ing to the stable storage,

usually a distributed file system.

Fig 4: Data flow in proposed System

Steps involved in proposed system

1. Preprocessing File - In file preprocessing stop

words are removed and stemming is performed

so that proper collection of words on which

operations are performed will be retained.

2. File Vector- When collection of words activity

ends in preprocessing, it is very important to

evaluate how important a word is to a document

in a collect ion or corpus. The significance

increases equivalently to the number of t imes a

word appears in the document but is offset by the

frequency of the word in the corpus. Tf-idf

(Term Frequencies Inverse Document

Frequencies) algorithm is a statistical

measurement weight of about the importance of

word in a document often used in search engine,

web data mining, text similarity computation and

other applications. So file vector manages above

details.

3. Create Signature- To find similar file it should be

compared with existing files available among the

millions of files to make comparison process

faster. To create signature bit vector is used and

initialized to zero first then hashed with file

vector so that decision will be taken regarding

whether existing file to be incremented or

decremented.

Journal of Computing Technologies (2278 – 3814) / # 91 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 91

4. Use Locality sensitive hashing to find nearest

neighbor- In large clustering environment to

compare file signature; locality sensitive hashing

technique is used to ensure that only nearest

neighbor need to be checked to place file [8].

5. Store file with related files - Name Node

maintains subclustertable which store

subclusterid and file placed on that cluster and if

subclusterid is not found then new subcluster

will be created.

The various data structures implemented are locality

sensitive hashing function, subclustering and storing

mapping information, cachetable, storing

intermediate result in the form of either array of

structure or linked list or object of classes.

V. EXPERIMENTAL RESULTS

There are several steps for installing and configuring

Hadoop. First install the fo llowing software, and then

configure hadoop.

 VMware Player 12

 Create new virtual machine and install ubuntu OS

 Install Java SE 7

 Install Eclipse Juno Release 1.0

 Install Apache Hadoop 2.0.

Fig-5. Hadoop Window.

Below is the Hadoop console output, this actually

splits the tasks into several records and allocate it to

the available data nodes. This console output will

update the status of Map () and Reduce () and the

task completion status.

Fig-6. Hadoop console

In the experimental results, the existing method such

as imapreduce and i2mapreduce with the proposed

method mapreduce using cache are compared with

the computation time in the graph shown in fig4.

Fig 7: runtime of individual stages

This graph shows comparative based on the retrieval

of data in their corresponding computation time.

Based on the comparison mapreduce using the cache

increases the efficiency and retrieve the abundant

informat ion thrown away after the map phase in the

mapreduce framework. It takes less amount of time

for the big data processing.

VI. PERFORMANCE EVALUATION

Overall performance evaluation of the mapreduce

using cache is shown in the fig 5. Mapreduce using

cache memory increases the performance in each

phase such as map, shuffle, and sort and reduce.

Performance is based on the time to complete the

map and reduce task. It takes less amount of time to

complete the job compared with imapreduce and

i2mapreduce.

0

200

400

600

800

imapreduce

i2mapreduce

mapreduce
using cache

Journal of Computing Technologies (2278 – 3814) / # 92 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 92

Fig 8: performance evaluation graph.

VIII. CONCLUSION

We have described mapreduce using cache in

hadoop, a mapreduce framework for big data

processing. Mapreduce using cache reduces workload

and increases the efficiency based on the individual

phases and it reduces the runtime in each phases of

mapreduce framework. Hadoop framework has

distributed cache to do mapreduce jobs in order to

increase the efficiency and get the reduced output in

optimized time.

REFERENCES
[1] J. Dean and S. Ghemawat, Mapreduce: simplified data
processing on large clusters in proc. 6th conf. Symp. Opear.

Syst.Des. Implementation, 2004,p. 10.

[2] R. Power and J. Li, Piccolo: Building fast, distributed

programs with partitioned tables.in proc. 9th USENIX

Conf. Oper. Syst. Des.Implementation, 2010.pp, 1-14.
[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.

Horn, N. Leiser, and G. Czajkowski, Pregel: A system for

large-scale graph processing, in Proc. ACM SIGMOD Int.

Conf. Manage. Data, 2010, pp. 135–146.

[4] S. R. Mihaylov, Z. G. Ives, and S. Guha, Rex:
Recursive, deltabased data-centric computation, in Proc.

VLDB Endowment, 2012, vol. 5, no. 11, pp. 1280–1291.

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A.

Kyrola, and J.M. Hellerstein, Distributed graphlab: A

framework for machine learning and data mining in the
cloud, in Proc. VLDB Endowment, 2012, vol. 5, no. 8, pp.

716–727.

[6] S. Brin, and L. Page, The anatomy of a large-scale

hypertextual web search engine, Comput. Netw. ISDN

Syst., vol. 30, no. 1–7, pp. 107–117, Apr. 1998.
[7] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and

R. Pasquin, Incoop: Mapreduce for incremental

computations, in Proc. 2nd ACM Symp. Cloud Comput.,

2011, pp. 7:1–7:14.

[8] Y. Zhang, S. Chen, Q. Wang, and G. Yu,
i2mapreduce:Incremental mapreduce for mining evolving

big data, CoRR, vol. abs/ 1501.04854, 2015.

[9] Y. Bu, B. Howe, M. Balazinska and M.D Ernst,

Haloop: Efficient iterative data processing on large clusters,

in proc, VLDB Endowment, 2010, vol. 3,no.1-2, pp.285-
296.

[10] Y. Zhang, Q.Gao, and C. Wang, imapreduce: A

distributed computing framework for iterative computation,

J. Grid comput, vol. 10, no. 1,pp.47-68,2012.

[11] Y. Zhang, S. Chen, Q. Wang, and G. Yu,
i2mapreduce:Incrementalmapreduce for mining evolving

big data, CoRR, vol. abs/1501.04854, 2015.

ABOUT THE AUTHOR
J. Janani received her B.E degree in Computer Science
and Engineering from Loyola institute of technology,

Chennai. Currently pursuing M.E degree in computer

science and engineering, at Arasu Engineering College,

kumbakonam. Her area of interests includes Medical Image

Processing, Data mining and Big data analytics.

K. Kalaivani received her M.E degree in Computer

Science and Engineering from Oxford Engineering

College, Trichy. Currently working as assistant professor

with 10 years of experience in Arasu Engineering College.
Her area of interests includes Networking,Wireless Sensor

Network, Big data analytics.

Journal of Computing Technologies (2278 – 3814) / # 93 / Volume 5 Issue 3

 © 2016 JCT. All Rights Reserved 93

