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Abstract— This paper focuses on detecting and 

localizing anomalous occasions in videos of crowded 

scenes, i.e., divergences from a dominant pattern. Both 
motion and appearance information are considered, so 

as to robustly distinguish different kinds of anomalies, 

for a wide range of scenarios. A newly introduced 

concept based on troop theory, histograms of oriented 

troops (HOS), is applied to capture the dynamics of 
crowded environments. HOS, together with the well -

known histograms of oriented gradients, are combined 

to build a descriptor that effectively characterizes each 

scene. These appearance and motion features are only 

extracted within spatiotemporal volumes of moving 
pixels to ensure robustness to local noise, increase 

accuracy in the detection of local, non-dominant 

anomalies, and achieve a lower computational cost. 

Experiments on benchmark data sets containing 

various situations with human crowds, as well as on 
traffic data, led to results that surpassed the current 

state of the art (SoA), confirming the method’s efficacy 

and generality. Finally, the experiments show that our 

approach achieves significantly higher accuracy, 

especially for pixel-level occasion detection compared to 
SoA methods, at a low computational cost. 

 

Index Terms— Troop, ability, crowd, anomaly, traffic. 

 

                        I. INTRODUCTION 

The widespread use of surveillance systems  in roads, 

stations, airports or malls has led to huge amount of 

data that needs to be analyzed situation even 

commercial reasons. The task of automatically 

detecting frames with anomalous or interesting 

occasions from long duration video sequences has 

concerned the research com-munity in the last 

decade. Occasion, and especially anomaly detection 

in crowded scenes is very important, e.g. for security 

applications, where it is difficult even for trained 

personnel to reliably monitor scenes with dense 

crowds or videos of long duration. Numerous 

methods have been proposed to assist in this 

direction. 

 

We deal with the challenging problem of detecting 

abnormal patterns in videos of crowded scenes that 

emerge as spatiotemporal changes, both in motion 

and appearance. An appearance-related anomaly 

would be, e.g. a bicycle passing through a crowd. 

Moreover, sudden changes in velocity, like an abrupt 

increase of its magnitude and the dispersion of 

individuals in the crowd are detected, indicating that 

something unusual and potentially dangerous may 

have occurred. 

 

In this work we propose a novel method for anomaly 

detection and localization that incorporates both 

motion and appearance information. We introduce a 

descriptor created from Histograms of Oriented 

Gradients (HOG) to capture appearance, and the 

newly introduced Histograms of Oriented Troops 

(HOS), to capture frame dynamics. Troop ability has 

been used in the past only in the framework of 

Particle Troop Optimization (PSO) in [1], where PSO 

optimizes a fitness function minimizing the 

interaction force derived from the Social Force 

Model (SFM). However, in our work, troops are used 

in a very different way: the core idea is to construct a 

prey based on optical flow values over a specific time 

window and deploy a compact troop flying over it to 

acquire accurate and discriminative information of 

the underlying motion. The agents’ motion is 

determined by forces acting on the troop (Sec. IV), 

which, unlike [1], do not correspond to the SFM, but 

are used to determine the troop motion and location. 

 

The experimental section shows that our algorithm 

outperforms state of the art (SoA) algorithms in 

accuracy and at a low computational cost. Our 

contribution can be summarized as follows: 

 

1) Troops are used in an original way, via 

Histograms of Oriented Troops (HOS) that are 

introduced to characterize crowd motion for 

anomaly detection. They lead to credibly 

filtered flow in videos of crowds, resulting to 

very few noisy flow values. Thus, troop ability 

captures the motion of crowded scenes in an 

efficient way that can be extended to other 

types of videos. 
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2) The method can be efficiently applied even 

when the motion in the crowded scene is non-

uniform in space and time, and “anomalies” 

appear locally in a changing context. This is 

shown in the experiments of Sec. VI on the 

complete UCSD dataset, where our method’s 

accuracy for pixel level anomaly detection 

surpasses the SoA. 

 

II. STATE OF THE ART 

Even though significant research has taken place on 

occasion and anomaly detection from static cameras 

[2], [3] the majority of these works address non-

crowded scenes, where detailed visual information 

can be exploited for each individual. However, real-

world surveillance scenarios often involve crowds of 

people or dense traffic, where such information 

cannot be easily extracted with traditionally used 

methods .Existing methods are of 

 

Main categories: those that use only motion 

information to detect an abnormality in the scene, and 

those that use both appearance and motion 

information to describe the scene dynamics. 

 

In the first category, Wu et al. [8] use chaotic 

dynamics in particles’ representative trajectories as a 

means to build a model capable of locating an outlier 

that moves with a different pattern. Even though this 

method works for very dense videos where a global 

motion pattern exists, it is  unable to detect local 

abnormalities that take place in a small region in the 

frame, or in the absence of a global pattern. Activity 

recognition based exclusively on trajectories is also 

proposed. However, this method is only based on 

motion information, completely ignoring the 

existence of “interesting” activities that exhibit a 

typical motion pattern. 

 

A common problem that is encountered by all the 

methods mentioned earlier is their inability to 

successfully detect anomalies that move similarly to 

the “normal” motion pattern, as they rely solely on 

motion characteristics. A second category of methods 

tackles this issue by incorporating appearance 

information as well. One work that stands out in this 

category is that of [21], that uses mixtures of 

dynamic textures to describe each 3D cuboid 

extracted from video sequence and detect temporal 

and spatial abnormalities. However, the 

computational cost of that algorithm, around 25 sec 

per frame, makes it prohibitive for many 

applications. An improved version of this method, 

with a lower computational cost, that is similar to 

ours, is found in [22]: that method’s accuracy is also 

improved, but it still remains lower than ours as the 

experiments in Sec. VI show. 

 

III. PROBLEM FORMULATION 

In this work, we address the problem of detecting 

dynamically changing anomalies in both space and 

time in videos with crowds of varying densities. In 

order to effectively capture these anomalies for a 

wide range of situations, we incorporate both motion 

and appearance features. Our algorithm uses data 

derived from automatically extracted regions of 

interest (ROIs) instead of entire video frames, so as 

to only process pixels containing information 

relevant to the occasion taking place, while at the 

same time achieving a lower computational cost, 

fewer false alarms, greater precision and successful 

spatiotemporal localization of anomalies, both on a 

global and local scale. 

 

In order to extract the ROIs, we apply background 

subtraction using weighted moving mean [28], as it 

has been shown to be robust and reliable, however 

other SoA background subtraction methods like 

Gaussian Mixture Models (GMMs) could also be 

used, leading to equivalent results. We define interest 

points on a dense grid in the resulting foreground and 

ROIs are described as rectangular areas of fixed size 

around each interest point. The size of the ROIs is 

determined at the beginning of each set of 

experiments, and depends on the camera viewpoint 

for each dataset. Due to the static nature of 

surveillance cameras, the block size needs to be set 

only once for each camera, or in our case for each 

dataset, and thus does not affect our algorithm’s 

generality. For the UCSD dataset, a ROI of 20 × 20 

pixels is used, as it is large enough to capture 

activity/appearance related details, but is not too 

large, so as to include noisy information in the 

descriptor. 

 

Once ROIs are extracted, the interest points in them 

are tracked until the next frames using the KLT 

tracker, while the foreground grid is continuously 

updated, with new interest points defined in each new 

frame’s foreground area. The resulting ROIs and the 

interest points in them are considered informative and 

are retained if at least 60% of that ROI contains 

motion, otherwise that interest point and its ROI are 

considered to be noisy and are ignored. The ROI 

needs to contain at least 60% moving pixels in order 

to be as informative as possible; if a ROI contains 

fewer moving pixels, noisy (motionless) data will 

also be taken into account, while if it is required to 

contain more moving pixels, potentially informative 

interest points may be ignored. 
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A. Appearance Modeling 

In order to extract the appearance characteristics of a 

video sequence, the Histograms of Oriented 

Gradients (HOG) proposed in [29] are used, as the 

HOG descriptor has several advantages over other 

appearance features: it is color invariant as it uses 

gray scale images, and is also invariant to 

illumination and local geometric transformations as a 

result of the normalization that takes place. At the 

same time, it effectively captures the local edge and 

gradient structure, so it can distinguish variations in 

appearance even in small areas of the image. The 

implementation of HOG that is adopted is that of 

[30], as it creates direction invariant HOGs by 

following a mirroring technique, where mirrored 

shapes are mapped into the same bin. Direction 

invariant appearance features (HOGs) decrease intra-

class variation, e.g. for walking, which is the 

predominant activity in human crowds, resulting in 

similar appearance descriptors for motions in 

opposite directions. This leads to more robust 

appearance descriptors that are suitable for the needs 

of anomaly detection in crowded videos, which can 

describe, for example, the density or sparseness of a 

crowd more effectively by ignoring directionality 

(which is not relevant for appearance). 

 

 
Fig. 1. Problem formulation. (a) Overview of final motion-appearance descriptor calculation. 

 

(b) Extraction of appearance descriptor (HOG).

B. Motion Modeling Using HOS Descriptor 

This work introduces a novel method for capturing 

crowd dynamics based on the application of troop 

ability, which is used to build a novel motion 

descriptor. Troop ability in computer science is 

inspired from the behavior and characteristics of real 

troops encountered in nature. Troops are comprised 

of individuals, which act autonomously, while 

following the specific rules of a troop and interacting 

with each other. Although the decisions of a troop’s 

individuals take place locally, their aggregated 

behavior can match occasions in crowded 

environments, which makes them relevant in many 

applications. 

 

Troop based methods have been used in the literature 

for image filtering and noise reduction [31], but their 

incorporation for the analysis of motion in videos is 

an original concept first presented in [32]. The core 

idea is the monitoring of movements in crowded 

scenes by a troop of agents “flying” over them, to 

capture their dynamics in a collective way while also 

taking motion history into account. Troops are thus 

deployed and the agents’ positions are extracted from 

their accelerated motion, derived from the forces 

acting on the troop as described in Sec. IV. They are 

then used to form Histograms of Oriented Troops 

(HOS), which are used to capture the ROIs’ 

underlying motion and detect anomalous occasions in 

them. The main concepts of our troop descriptor are 

presented in the following section. 

 

IV. TROOP MODELLING FOR CROWDS 

DYNAMICS 

In our implementation, we adopt physics-based 

modeling of crowded scenes, as their properties are 

highly correlated with those of a troop in nature. The 

troop model that is used is based on the general 

theory described in [31] and on the behavior of 

natural troops, consisting of predators, which “fly” 

over the “prey”, following its dynamics. In [31], 

troop modeling is used to filter noise in images, 

whereas in this work it is deployed to better 

characterize the highly complex and stochastic 

motion information from videos of crowds. In our 

implementation, troops comprise of agents and a 

prey: the agents “track” the prey, but also interact 

with each other, as they would in nature. Hence, 

agents (“predators”) are subject to three types of 

forces: “physical” forces, like inertia and friction, 

interaction forces between them, and external forces 

dependent on the prey. Interaction forces ensure the 
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cohesion of the troop of agents, friction forces 

maintain elementary memory of the agents’ velocity, 

while external forces depend on the characteristics of 

the prey being tracked. 

 

In our case, we are interested in the extraction of 

motion features via the troop modeling, so optical 

flow (OF) values are used as a prey, as detailed in the 

next section. Thus, the use of troops is expected to 

lead to better results than when using OF information 

alone, as they can capture the most important aspects 

of crowd behavior while circumventing the effects of 

local noise, occlusions and the overall complexity of 

motion in crowded scenes. 

 

Consequently, in this approach, troop ability maps 

the motion information into a more informative space 

by efficiently tracking the motion represented by the 

prey. Agents filter the prey motion, avoiding false 

alarms and local noise caused e.g. by occlusions or 

outlier optical flow values. The prey corresponds to 

the values of the variable that we want to leverage in 

the discriminative process. In our case, we are 

interested in the extraction of motion features via the 

troop modeling, so optical flow (OF) values are used 

as a prey, as detailed in the next section. Thus, the 

use of troops is expected to lead to better results than 

when using OF information alone, as they can 

capture the most important aspects of crowd behavior 

while circumventing the effects of local noise, 

occlusions and the overall complexity of motion in 

crowded scenes. 

 

 

A. Prey Generation 

The prey that is tracked by the troop comprises of 

magnitude values of pixels lying inside ROIs, instead 

of their luminance, which is the case in [31]. Hence, 

the number of prey in each frame varies, as it is 

equal to the number of ROIs in the frame. In this 

section we describe how prey data is extracted, 

namely how it is mapped to be tracked by agents. As 

mentioned previously, ROIs correspond to 

rectangular areas around each interest point 

containing a fixed number of n pixels. In order to 

form the prey for a ROI in a temporal window of m 

frames, we consider the pixels of each ROI 

sequentially over time. Each pixel at position i in a 

particular ROI of frame j has OF magnitude equal to 

Oij , where 1 ≤i≤n and 1 ≤j≤m.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Prey extraction in a m frame window occurs 

sequentially in a cuboid of m frames. First, m “OF 

values” of the 1 st pixel are taken into account, then m 
instances of the 2 nd pixel and so on, until m instances 

of the n t h pixel, where n is the number of pixels in 

each ROI.  
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For the prey construction, we consider the i
t h 

pixel’s OF 

sequentially over time. The OF magnitude is used to 

determine the prey’s position xp as follows: 

 

x p(t )=Oi j  

 

Where t is a spatiotemporal index that spans all n ROI 

pixels over m frames, so that 1 ≤t≤n·m. The selection of 

the sequence of pixels for prey construction is very 

important for capturing meaningful temporal information. 

 
B. Extraction of Forces 

In this section we present the manner in which the agents 

operate, i.e. the way they “fly over” the prey and track it. 

Agents are groups that we define to track the prey and 

characterize its state: they are initially located in random 

positions, which change over time according to agent-prey 

forces, agent-to-agent forces and friction forces presented 

here. The result of these forces’ interactions is the 

accelerated motion of the agents, which is affected and 

formed according to prey behavior. These forces are 

inspired by crowd psychology and the analysis of 

movements of individuals  in crowds [33], matching real 

world behaviors of people (or other entities, like cars or 

animals) in crowded situations: for example, when agents 

are too close to each other, repulsive forces develop 

between them, while the opposite occurs (attraction forces 

develop) when they are at a large distance, ensuring the 

cohesion of the troop of agents. An illustrative example of 

the way the troop follows the prey is given in Fig.3. 

 

 

 

 

 

 

 

 

 

 
C. HOS Descriptor 

In order to form the HOS descriptor, we examine the 

evolution of the agents’ positions, determined by prey 

motion patterns and the forces affecting the agents. We 

modify Newton’s second law of motion by inserting an 

elementary parameter γ that takes into account the previous 

velocity values, as in Eq. (9) shown below. Then, the 

acceleration x¨i(t) of each agent i at position xi(t) is given 

by the vector sum of all forces acting on it, considering the 

fact that an agent’s mass equals 1, along with the γ -

weighted velocity of the previous time instant. Thus, the 

acceleration of each agent is given by: 

x¨i(t )=(γ−1)x˙i(t −1)+Fneigh(i, t )  

+ Ff r i c(i,t) + Fex t(i,p,t),  

 

x˙i(t )=γ·x˙i(t −1)+δ·x¨i(t ),  

Where δ constitutes a time step parameter, 

 

 

 

 

During training, ROIs are extracted and the pixel OF in 

them is examined and tracked by the agents. We then 

compute the average of troop agents’ positions of Eq. (11) 

for each t , and follow a process similar to the HOG 

extraction of Sec. III-A to extract weighted histograms of 

agents’ positions (HOS), according to the corresponding 

OF orientation. As in Sec. III-A, each ROI (block) around 

each interest point, is partitioned into 2 × 2 cells, and the 

positions of the troop agents that follow this particular 

block establish a weighted histogram of 18 bins according 

to the OF orientation in each cell.  

 

Subsequently, these 4 histograms are concatenated to form 

the block’s HOS. In order to include temporal information, 

the final motion descriptor contains histograms of 

subsequent frames, averaged in triplets over each time 

window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Overview of method proposed in a time window of m 

frames. 

 

V. ANOMALY DETECTION AND LOCALIZATION 

Appearance and motion descriptors are combined to form 

the final descriptor for anomaly detection. In a time 

window of m frames, average triplets of HOG and HOS are 

consecutively concatenated, resulting in the feature vector 

of Eq. (12): 

f  = { H O G1,3, H O S1,3, . . . , H O Gm−2,m, H O Sm−2,m}

  

The Support Vector Data Description (SVDD) method of 

[34] was chosen, as it is known to be best suited for outlier 

detection. According to this approach, spherical boundaries 

are used instead of planar ones around the provided data of 

the training set. The goal is to enclose nearly all n training 

examples in a hyper sphere with center o and the smallest 

possible radius R, with the outliers lying outside this 

sphere. Thus, its purpose is to minimize the function: 

After training, localization is straightforward, as 

descriptors are estimated spatially in specific ROIs around 

interest points. Our algorithm checks each frame’s ROI 

independently, infers about its normality and then notifies 

the system.  
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Hence, our method is capable of dealing with non-

uniformly moving and evolving crowds, as the descriptors 

are examined and characterized separately in each ROI. It 

can accurately localize different anomalies in a wide range 

of videos, from human crowds to traffic, as the 

experiments that follow demonstrate. 

 

VI. EXPERIMENTS 

In order to evaluate the effectiveness of our method, we 

applied it on four benchmark datasets of surveillance where 

different kinds of anomalies were detected. Our 

algorithm’s speed and accuracy on a frame and pixel level 

were calculated and compared with the SoA, demonstrating 

its effectiveness.  

 

The length of the window should be large enough to 

contain sufficient information and, at the same time, as 

small as possible to avoid undesirable delays during the 

detection process. Hence, we use a temporal window 

length that depends on the frame rate and the underlying 

dominant motion, which in our case is the mean walking 

frequency of a pedestrian. As an example, Fig.5 depicts the 

optical flow values of a pedestrian for the “ped2” dataset.

A. Sensitivity Analysis 

As the extensive analysis proved, after defining the 

range of each variable that ensures system stability, 

our algorithm’s performance is not particularly 

influenced by further variations in these parameter 

values. Finally, the number of agents forming the 

troop is fixed to 5, as it is empirically found that this 

number sufficiently represents the filtered motion 

dynamics of the scene without negatively affecting 

the algorithm’s speed. Experiments  showed that the 

use of more agents heavily increased the 

computational cost, with a computational time of 

3.86 sec per frame if the number of agents increased 

to 50, while the algorithm’s performance actually 

decreased. This can be attributed to the fact that the 

presence of too many agents may lead to noisy 

internal forces due to the density of the troop, which 

occasionally degrades the results. On the other hand, 

the use of fewer agents, as few as 2 agents for 

example in “ped1”, also decreased algorithm’s 

performance from 78.87% to 73.66%. The initial 

agents’ speed and accelerations are set to zero, 

whereas their initial positions are randomly 

generated. 

 
B. Evaluation Criteria 

In order to evaluate our method, we use the same 

criteria as the SoA literature for benchmark datasets. 

Thus, the frame and pixel level criteria described in 

[21] are adopted for UCSD dataset in Sec. VI-C, 

while the Area under the Curve (AUC) is used for the 

UMN and U-turn videos described in Sec. VI-D and 

Sec.VI-E respectively. 

 

The frame level criterion localizes changes only in 

time, predicting which frames contain an anomaly, 

without finding its spatial location: a frame is thus 

characterized as abnormal if it contains at least one 

abnormality, wherever it is located. 

 

 In contrast, the pixel level criterion includes both 

temporal and spatial anomaly localization, and is 

used in the literature [21] as follows: if at least 40% 

of all anomalous pixels are found (as determined by 

the ground truth annotation), the detection is 

considered successful and the frame is characterized 

as abnormal.  

 

True positives and false positives are then derived by 

comparing the spatiotemporally detected anomalies 

with the ground truth, leading to Receiver Operating 

Characteristic (ROC) curves of true positives vs. 

false positives to evaluate the method’s performance.  

The Equal Error Rate (EER) corresponds to the frame 

level criterion, while the Detection Rate (DR) 

corresponds to the pixel level criterion. These metrics 

have been widely used in the literature for the 

benchmark UCSD dataset, as they provide a reliable 

criterion to evaluate method’s performance and to 

compare it with other SoA works. The EER 

corresponds to the error rate of a system when the 

false positives (detections of anomalies in a normal 

situation) are equal to the false negatives (missed 

anomaly detections). 

 
C. UCSD Dataset 

The UCSD dataset is comprised of two subsets 

“ped1” and “ped2”, containing different scenes 

recorded from different camera angles [21]. Each 

“ped1”, “ped2” subset is divided into a training set 

containing exclusively normal frames and a test set, 

including different kinds of anomalies. The dataset 

consists of crowds of medium density traversing the 

scene (“ped2”) or moving towards and away from 

camera, adding some perspective (“ped1”). The 

UCSD dataset constitutes a challenging dataset, as it 

contains many occlusions, a variety of anomalies, 

sometimes co-occurring in the same frame, and its 

resolution is of low quality. Anomalies present in the 

test set include bicycles, skaters or other wheeled 

objects moving with different speeds and passing 

through the crowd, which are in some cases difficult 

to detect even for human observers.  

As can be seen, different kinds of “anomalies” are 

successfully localized even when they co-occur in the 

same frame, as in Fig.11(f). A remarkable 

achievement of the proposed method is that 

deviations from normal patterns can be also detected 

in highly occluded scenes. 

 
D. UMN Dataset 

The UMN dataset [35] consists of 7739 frames of 

320 × 240 pixels in 3 different scenes (umn1, umn2, 

umn3) including respectively 2, 6 and 3 scenarios of 

crowd escape occasions. The first frames in each 

occasion depict a normal crowd situation, with 

people walking or standing in the scene, while 

“anomaly” takes place with a sudden evacuation. 

This data is quite straightforward, as the “anomaly” is 

global and can be easily detected even by only using 
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the average frame motion. As a result, many methods 

have been proposed for this data, achieving near 

perfect scores. 

 

The main drawback of this dataset is its limited size, 

in combination with the absence of a separate 

training set. The limited number of training frames 

results in a not well defined “normal” class. Our 

descriptor uses detailed appearance and motion 

information; however these change significantly, 

even in the “normal” frames, so it requires more 

training data for a better defined description of the 

“normal” occasions. As a result of its limited size, 

this data does not allow us to demonstrate the true 

potential of our method, which uses many complex 

features so as to be applicable to more difficult 

videos. 

 

 

 

Fig. 4. Different kind of anomalies (shown in red blocks)

 

 

 

 

 

 

Fig. 5.Our results for Love Parade. The truck and ambulance are successfully detected going through a very dense crowd. 
People from the crowd climbing over the railings are also detected as anomalous behaviour. 

 

 

 

E. U-Turn 

In order to confirm our method’s robustness, we also 

applied it to a non-crowd dataset. We used the U-turn 

dataset of [36], which shows normal traffic in a 

crossroad and some cars making illegal U-turns 

(“anomaly”). The dataset comprises of 6117 frames 

of 360 × 240 pixels. The scenes are quite sparse and, 

in combination with the dataset’s limited size, there is 

not much training data. However, even with limited 

training samples, all anomalies are perfectly detected 

and localized, as can be seen in Fig. 15. It is 

remarkable that in the first frame in Fig. 15, our 

algorithm correctly distinguishes between an illegal 

turn and a legal one. Around 3400 frames depicting 

normal traffic were used for training, and the rest 

were used for testing. In Fig. 16, the ROC curve of 

our method for the U-turn data is compared with the 

results provided by [22]. As it is shown, we achieve 

the highest AUC at the frame level, equal to 95, 31%, 

with all “anomalies” having been correctly detected 

and localized. 

 
F. Love Parade 

The algorithm was also tested on the surveillance 

data of Love Parade 2010 [37], which contains videos 

of high density crowds. Snapshots are provided in 

Fig. 17 and, as it can be observed, deviations from 

normal crowd patterns are correctly detected and 

localized, despite the little motion present, and the 

high number of occlusions, due to the high crowd 

density. Around 1000 frames were used for training 

with the rest of the frames used for testing. The truck 

and ambulance are successfully detected while 

traversing a highly dense crowd, whereas people in 

the crowd jumping over railings are also detected as 

an anomalous behavior. 

 

VII. CONCLUSION 

In this work, we propose a novel framework for 

anomaly detection in different scenarios, recorded 

from static surveillance cameras. Troopability is 

exploited for the extraction of robust motion 

characteristics and together, with appearance features 

form a descriptor capable of effectively describing 

each scene. Its remarkable performance in 4 

completely different kinds of datasets proves the 

method’s generality and its applicability in real life 

situations. The high detection rate in the UCSD 

dataset, that greatly out-performs various state-of-

the-art approaches, especially on the most 

challenging pixel level criterion, demonstrates that 

the proposed algorithm can be effectively used for 

challenging crowd videos with many occlusions, 

local noise and local scale variations. This fact in 

combination with its low computational cost and its 

effectiveness in different environments, make our 

algorithm very appropriate for a variety of 

surveillance applications. 
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