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Abstract - The Video Deraining Algorithm (VDA) is used to 

eliminate drizzle, blizzard, hail and mist from a video sequence 

using temporal interaction and low-rank matrix fulfilment. If the 

drizzles are too small and move at the high rate it will affect the 

optical flow estimation between consecutive frames. To avoid 

these drizzles i.e rain and snow, an initial rain map is subtracting 

temporally deform frames from a current frame. After that, they 

decompose the initial rain map into basis vectors based on the 

sparse representation and classify those basis vectors into drizzle 

ones and outliers with a Support Vector Machine (SVM). Finally 

by excluding the outliers, the detected results will remove the 

drizzles by employing a low-rank matrix fulfillment technique. 

Thus the overall efficiency of VDA is recommend to high-fidelity 

video dedrizzling and improves the performance by removing the 

hail and dew drops in a video. 

 

Keywords – Video Deraining Algorithm, Support Vector 

Machine, Deraining, Stereo Video deraining. 

 

I. INTRODUCTION 

The video capturing devices, such as smart phones and digital 

cameras, are relatively cheap and popular nowadays, which 

facilitate the widespread production and consumption of high 

quality video sequences. Outdoor video sequences, however, 

are often degraded due to various weather conditions such as 

haze, fog, rain, and snow. Image processing and computer 

vision systems, including tracking and surveillance, may not 

work properly on these degraded videos. Therefore, attempts 

have been made to compensate for the weather- dependent 

degradation and enhance outdoor video sequences. Early 

attention has been drawn to haze removal. Haze exhibits a 

static distribution of tiny particles in the air, which degrades 

image contrast [1]. Thus, most dehazing algorithms attempt 

to enhance the contrast. 

On the contrary, as illustrated in Fig. 1, rain or snow causes 

elongated streaks, the locations of which are randomly 

distributed within an image also based on time varying which   

 
Fig 1. Desnowing of a frame (a) Input frame (b) Desnowing 

result (c) Snow map 

 

dynamically in the case of a video sequence. Moreover, a 

rain or snow streak is larger than a haze element, hiding the 

colors of objects behind. Therefore, video deraining or 

desnowing, which recovers rain-free or snow-free video 

sequences, is more challenging than dehazing. Several 

deraining algorithms have been proposed [2]–[10]. 

However, most deraining algorithms do not consider global 

motions, object motions or various sizes of rain streaks, and 

thus they may fail to remove rain streaks clearly. 

 

Thus, the video deraining algorithm using temporal 

correlation and low-rank matrix completion  generate  an  

initial  rain  map  from  the differences between the current 

frame and the warped adjacent frames using  a  Support  

Vector  Machine  (SVM). By removing the outliers, we 

refine the rain map and detect rain streaks. Finally, the 

result detected rainy pixels using a matrix completion 

algorithm, which performs the Expectation Maximization 

(EM) iterations for the low-rank approximation. Moreover,   

the proposed video deraining algorithm is used to stereo 

video deraining. Experimental results demonstrate that the 

proposed algorithm outperforms conventional algorithms, 

by removing rain streaks efficiently and reconstructing 

scene contents faithfully. 
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II. RELATED WORKS 

Kang et al. [3] proposed a single image deraining algorithm, 

assuming that rain streaks can be represented by a selected 

set of basis vectors. They decomposed high frequency 

components in a rainy image into basis vectors via sparse 

representation. They then clustered the basis vectors into 

rainy components and structural components. They 

recovered a rain-free image by keeping the structural 

components only. 

 

Hase et al. [4] proposed an early video deraining algorithm, 

which used a temporal median filter to restore pixel values. 

The median filtering is effective for deraining static scenes, 

but it may cause blurring artifacts around dynamic objects. 

Garg and Nayar [5] detected rainy pixels in a frame, which 

exhibited brighter intensities than the corresponding pixels 

in adjacent frames. They reduced outliers, falsely estimated 

as rain streaks, based on the constraints that rain streaks 

should have similar directions and their colors should be 

related to the background colors. This approach is physically 

sound [2], but yields good results only when rain streaks are 

distinguishable from moving objects.  

 

Garg and Nayar [6] also proposed a hardware-based scheme, 

which suppresses rain streaks by increasing the exposure 

time of a camera or focusing on objects behind rain streaks. 

It implicitly performs low-pass filtering; resulting in spatio-

temporal blurring and it may not handle rainy sequences 

with dynamic objects or diverse scene depths effectively. 

Zhang et al. [7] removed rain streaks by enforcing the 

photometric constraints:  a pixel color should be dominated 

by the background color, and the brightness changes of rainy 

pixels should be similar through an entire sequence. 

However, they replaced a rainy pixel with a temporal average 

of background pixels, yielding blurring artifacts. 

 

Barnum et al. [8] proposed a deraining algorithm based on 

frequency analysis. Their algorithm transforms rainy frames 

into the Fourier  domain  to  detect  rain  streaks,  which  

tend to  have elliptical shapes and appear at  similar 

locations in  the frequency domain. It removes rain well 

even in the case of dynamic scenes, but it cannot remove 

thick rain streaks properly. Another approach to deraining is 

based on optical flow estimation [9], [10]. A current frame is 

first reconstructed by warping an adjacent frame according 

to the optical flow.    In general, an overall scene structure is 

identical between the current frame and the warped frame, 

except for rain streak regions. Therefore, a rain-free image 

can be obtained by replacing pixel values, which are bigger 

in the current frame than in the warped frame, with those of 

the warped frame. However, [9], [10] do not consider 

outliers, such as occluded regions, where the optical flow 

estimation fails. 

 

Fig 2. Overview of proposed algorithm 

In Fig 2. an initial rain map from an image frame, which is 

then refined based on sparse representation  and 

classification. Finally, the result is reconstructing a rain-

free frame by exploiting the information in adjacent 

frames. 

III. PROPOSED ALGORITHM 

First step is to obtain an initial rain map by computing the 

difference between a current frame and an optimally warped 

frame. Second step is to decompose the initial rain map 

using sparse basis vectors, and employ an SVM classifier to 

dichotomize those vectors into valid ones and outliers. Then 

reconstruct a refined rain map by employing the valid 

vectors only. Finally, replace rainy pixels with rain-free 

values, by formulating the rain streak removal as a matrix 

completion. 

A. Initial Rain Detection 

Fig. 3 show a current frame Ik and its previous frame Ik−1 in 

the video sequence “Mailbox.” The rainstreaks appear 

randomly and each streak occupies a relatively small area in 

a frame and moves fast between consecutive frames. Also, 

when a rain streak passes across a pixel, the pixel value 

becomes brighter than its original color [5]. Hence detect a 

rainy pixel, which has a larger value in a current frame than 

in adjacent frames. This approach, however, is prone to false 

detection, since the same pixel coordinates   in different 

frames may not represent the same scene point.  A video 

sequence may contain dynamic objects or be captured with a 

moving camera. This approach, however, is prone to false 

detection, since the same pixel coordinates   in different 

frames may not represent the same scene point.  A video 

sequence may contain dynamic objects or be captured with a 

moving camera. 
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(a)                                                     (b)                                                            (c)                                                        (d) 

Fig 3. Initial Rain Detection  (a) Current frame (b) Previous frame (c) Warped previous frame (d) difference between (a) and (c) 

 
To compensate for these mismatches between consecutive 

frames, we warp the previous frame into the current frame 

by estimating the optical flow field. An optical flow 

estimation algorithm finds a dense motion field between 

two consecutive image frames [13]–[15]. For each pixel in 

a reference frame, a motion vector is determined to find the 

most similar pixel in a target frame, while maintaining the 

similarity of the motion vectors among neighboring pixels. 

The optical flow estimation is often formulated as a 

minimization problem, in which an energy function E is 

given by (1) 

 ( )    ( )     ( )                                  ( )        

where U is a flow field and λ is a regularization parameter. 

The data term Ed measures the similarity between 

corresponding pixels in the reference frame I1 and the target 

frame   I2 in (2), 

  ( )  ∫ (  (   ( ))    ( )))
         ( ) 

where u(x) is  the  optical flow vector of  pixel x,  and  ψ  is 

a penalty function. The smoothness term Es constrains 

neighboring vectors to be similar (3). 

  ( )  ∫ ( ( ))                              ( ) 

Finally, we obtain an initial rain map R as the difference 

image between the current frame Ik and the hybrid warped 

frame I˜k , 

 ( )      (  ( )  ( ))   
           ( ) 

where negative differences are truncated to 0, since rainy 

pixels are assumed to be brighter than their original colors 

(4). Note that we use only the luminance components of the 

initial rain map in the following steps of the rain map 

refinement and the rain mask generation. 

 
B. Rain Map Refinement 

To obtain a binary rain mask by thresholding an initial rain 

map. Fig. 4 shows an initial rain map and the resultant 

binary rain masks using different thresholds. Note that the 

binary rain masks contain falsely detected outliers, caused 

by warping errors or brightness changes between frames, or 

fail to detect some valid rain streaks. In general, as we 

decrease the threshold, many outliers are falsely detected as 

rain streaks. On the contrary, as we increase the threshold, 

we can reduce such outliers but also miss valid rain streaks. 

Moreover, outliers often overlap with valid rain streaks. 

Therefore, to detect valid rain streaks reliably while 

suppressing outliers, refine an initial rain map before the 

thresholding. 

 

To refine an initial rain map, we exploit the directional 

property of rain streaks: rain streaks tend to have elliptical 

shapes, whose major axes deviate little from the vertical 

direction. In contrast, falsely detected  outliers  have 

arbitrary shapes or yield random directions of major axes. 

Therefore, the matrix R by multiplying the new dictionary D 

with the coefficient matrix A in (5). 

 
                               ( ) 

The Morphological Component Analysis (MCA) 

decomposes a given signal into basis vectors based on 

sparse representation, and then reconstructs the signal by 

employing selected basis vectors  only. From the binary 

rain mask M, we further remove outliers by erasing small 

connected components of size 5 or less.  Then, the result 

performs the dilation operation on the rain mask, since the 

refinement procedure may distort the boundaries of rain 

streaks. 

 

Finally, we generate a binary rain mask    M from the 

refined rain map is given by (6) 

 

 ( )  {
      ( )   
           

      (6) 

From the binary rain mask M, we further remove outliers by 

erasing small connected components of size 5 or less.  Then, 

we perform the dilation operation on the rain mask, since the 

refinement procedure may distort the boundaries of rain 

streaks. 
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Fig 4. Rain Map Refinement 

(Binary mask of initial & refined rain map) 

 

C. Rain Streak Removal 

The restore pixel values, detected as rainy in Fig 5, by 

exploiting temporal redundancies in adjacent frames. 

Specifically, we formulate the rain removal as a low-rank 

matrix completion problem. We first partition the current 

frame Ik into disjoint blocks.  For  each  block  b,   we  search  

for   the  l  most  similar  blocks  from  each  of  the  four   

adjacent frames: Ik−2 , Ik−1, Ik+1, Ik+2. Notice that we do not 

find similar blocks from the current frame. This is because 

similar blocks in the current frame tend to be selected near the 

given block b and affected by the same rain streak, degrading 

the deraining performance. To measure the similarity between 

two blocks, we compute the sum of the squared differences 

between rain-free pixels only.  Then, we define a matrix B,   

by concatenating the given block b in the current frame and its 

4l most similar blocks bi’s in the adjacent frames (7),  

 
  [              ]         ( ) 

where each block is represented by a column vector. We also 

define the binary rain mask matrix M for B, given by (8) 

  [              ]    ( ) 

1)  EM-Based Rain Streak Removal Algorithm 

Input    : pixel matrix B and mask matrix M 

Output :  X=X
(t)

 

Steps 

1. Initialize t=0 Y
(1) 

=B 

2. Repeat t=t+1 

3. X
(t)

=1 

4. Y
(t+1)

= U* V
t 

5.Until t=tmax 

End. 

 

  

 
Fig 5. Iterative Removal of Rain streaks (a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 10 (e) Iteration 20 (f) Iteration 50 

 

IV. EXPERIMENTAL RESULTS 

Fig 6. Evaluates the performance of  the proposed  EM-based 

matrix completion algorithm on  various video   sequences. 

More results with those of different matrix completion 

algorithms achieve better performance than the conventional 

algorithms. In addition, the algorithm compare the rain 

removal performance with image inpainting techniques as 

toatl variation inpainting and ex-emplar based inpainting 

methods. And also the algorithm reconstructs the original 

scene contentsfaithfully. 

 
 

Fig 6. Desnowing Experimental Results 
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A.  Execution Time 

The proposed algorithm is implemented in Matlab without 

code optimization. Note that the  sparse  representation  for  

the rain map refinement and the block matching for the rain 

streak removal spend most of the execution time. Such high 

complexity could be reduced by approximating the sparse 

representation and employing a more efficient block 

matching algorithm.  

 

V.CONCLUSION 

A video deraining algorithm, which exploits temporal 

correlation in a video sequence, based the low-rank matrix 

completion. The proposed algorithm obtains an initial rain 

map, by warping previous and next frames and comparing 

those warped frame with a current frame.  Then it refines the 

initial rain map by removing outliers based on the sparse 

representation and the classification. Finally, the proposed 

algorithm fills in rainy pixels using the EM-based low-rank 

matrix completion.  They also extended the proposed 

algorithm to stereo video deraining. Extensive experimental 

results demonstrated that the proposed algorithm removes 

rain and snow streaks more efficiently, while preserving 

scene structures more faithfully, than the conventional 

algorithms. 
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