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Abstract-  In   this   project   a   32-task   Real   Time 

Microkernel is designed using which multi tasking can be 

done on the targeted processor  ARM1176JZFS from 

ARM limited. The Micro kernel includes a preemptive 

priority  scheduler  and context switching  modules for 

carrying  out   multi-tasking.  Routines  to  create  and 

manage tasks will be developed. Once created, the tasks will 

be scheduled by our own scheduler  automatically. 

Subsequently, inter task  communication mechanism is 

added to this  scheduler, to make it a small real-time 

kernel. Tool  we  are  using    RVDS(Real view development 

suit) 

 

Keywords— I.P.C, thread creation, scheduling, context 

switching. 

 

I Introduction  

Real-time systems are those systems whose response is 

deterministic in time. A real-time microkernel is the near-

minimum amount of software that can provide the 

mechanisms needed to implement a real-time operating 

system. These mechanisms include low-level address space 

management, thread management, and inter-process 

communication (I.P.C). As an operating system design 

approach, microkernels permit typical operating system 

services, such as device drivers, protocol stacks, file 

systems and user interface code, to run in user space. 

Throughout this document OS and Microkernel are used for 

same meaning though OS includes device drivers and file 

system management, which is not present in microkernel. 

Two sets of functions are developed in this project. First 

one is Kernel functions and second is application functions.  

Kernel functions are mainly for carrying out task creation, 

multi-tasking and Inter task communication.  The number of 

application functions can be from 1 to 32.  Each of these 

application functions is created as a task by the microkernel 

and scheduled by the pre-emptive priority scheduler. Multi 

tasking of these application tasks is demonstrated in this 

project. Following section explains the responsibilities of the 

various functions implemented in the Kernel along with the 

function prototypes of the Kernel functions. 

 

Fig 1 Difference between monolithic kernel and microkernel 

In computing, the kernel is the central component of most 

computer operating systems; it is a bridge between 

applications and the actual data processing done at the 

hardware level. The kernel's responsibilities include 

managing the system's resources (the communication 

between hardware and software components).
[1]

 Usually as a 

basic component of an operating system, a kernel can provide 

the lowest-level abstraction layer for the resources 

(especially processors and I/O devices) that application 

software must control to perform its function. It typically 

makes these facilities available 

to application processes through inter-process 

communication mechanisms and system calls. 

Operating system tasks are done differently by 

different kernels, depending on their design and 

implementation. While monolithic kernels execute all the 

operating system code in the same address space to increase 

the performance of the system, microkernels run most of the 

operating system services in user space as servers, aiming to 

improve maintainability and modularity of the operating 

system.
[2]

 A range of possibilities exists between these two 

extremes. 
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Fig 2  Kernel connecting  the application software to the hardware of a 

computer 

In most cases, the boot loader starts executing the 

kernel in supervisor mode. The kernel then initializes itself 

and starts the first process. After this, the kernel does not 

typically execute directly, only in response to external events 

(e.g., via system calls used by applications to request services 

from the kernel, or via interrupts used by the hardware to 

notify the kernel of events). Additionally, the kernel typically 

provides a loop that is executed whenever no processes are 

available to run; this is often called the idle process. 

Kernel development is considered one of the most complex 

and difficult tasks in programming. Its central position in an 

operating system implies the necessity for good performance, 

which defines the kernel as a critical piece of software and 

makes its correct design and implementation difficult. For 

various reasons, a kernel might not even be able to use 

the abstraction mechanisms it provides to other software. 

Such reasons include memory management concerns (for 

example, a user-mode function might rely on memory being 

subject to demand paging, but as the kernel itself provides 

that facility it cannot use it, because then it might not remain 

in memory to provide that facility) and lack of reentrancy, 

thus making its development even more difficult for software 

engineers. 

A kernel will usually provide features for low-

level scheduling of processes (dispatching), inter-process

 communication, process synchronization, context

 switching, manipulation of process control 

blocks, interrupt handling, process creation and destruction, 

and process suspension and resumption. 

II. ARM1176JZF-S  PROCESSOR 

The ARM1176JZF-S processor incorporates an integer core 

that implements the ARM11 ARM architecture v6. It 

supports the ARM and Thumb™ instruction sets, Jazelle 

technology to enable direct execution of Java byte codes, and 

a range of SIMDDSP instructions that operate on 16-bit or 8-

bit data values in 32-bit registers. 

The ARM1176JZF-S processor features 

• TrustZone™ security extensions 

• Provision for Intelligent Energy Management (IEM™) 

• High-speed Advanced Microprocessor Bus Architecture 

(AMBA) Advanced 

  Extensible Interface (AXI) level two interfaces supporting 

prioritized 

  multiprocessor implementations. 

• An integer core with integral Embedded ICE-RT logic 

• An eight-stage pipeline 

• Branch prediction with return stack 

• Low interrupt latency configuration 

• Internal coprocessors CP14 and CP15 

• Vector Floating-Point (VFP) coprocessor support 

• External coprocessor interface 

• Instruction and Data Memory Management Units (MMUs), 

managed using 

  MicroTLB structures backed by a unified Main TLB 

• Instruction and data caches, including a non-blocking data 

cache with 

  Hit-Under-Miss (HUM) 

• Virtually indexed and physically addressed caches 

• 64-bit interface to both caches 

• Level one Tightly-Coupled Memory (TCM) that you can use 

as a local RAM with 

   DMA 

• Trace support 

• JTAG-based debug. 

TrustZone security extensions 

The ARM1176JZF-S processor supports TrustZone security 

extensions to provide a secure environment for software. This 

section summarizes processor elements that TrustZone uses. 

The TrustZone approach to integrated system security 

depends on an established trusted code base. The trusted code 

is a relatively small block that runs in the Secure world in the 

processor and provides the foundation for security throughout 

the system. This security applies from system boot and 

enforces a level of trust at each stage of a transaction. 

The processor has: 

• seven operating modes that can be either Secure or Non-

secure 

• Secure Monitor mode, that is always Secure. 
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Except when the processor is in Secure Monitor mode, the 

NS bit in the Secure 

Configuration Register determines whether the processor runs 

code in the Secure or Non-secure worlds. The Secure 

Configuration Register is in CP15 register c1. 

Secure Monitor mode is used to switch operation between the 

Secure and Non-secure worlds. 

Secure Monitor mode uses these banked registers: 

R13_mon Stack Pointer 

R14_mon Link Register 

SPSR_mon Saved Program Status Register 

The processor implements this instruction to enter Secure 

Monitor mode: 

SMC Secure Monitor Call, switches from one of the 

privileged modes to the 

Secure Monitor mode. 

Operating modes 

In all states there are eight modes of operation: 

• User mode is the usual ARM program execution state, and 

is used for executing 

   most application programs 

• Fast interrupt (FIQ) mode is used for handling fast 

interrupts 

• Interrupt (IRQ) mode is used for general-purpose interrupt 

handling 

• Supervisor mode is a protected mode for the OS 

• Abort mode is entered after a data abort or prefetch abort 

• System mode is a privileged user mode for the OS 

• Undefined mode is entered when an undefined instruction 

exception occurs. 

• Secure Monitor mode is a Secure mode for the TrustZone 

Secure Monitor code. 

 

         Fig.3 lists the mode structure for the processor 

Pipeline stages 

• the two Fetch stages 

• a Decode stage 

• an Issue stage 

• the four stages of the ARM1176JZF-S integer execution 

pipeline. 

These eight stages make up the processor pipeline.     

                                  

                   

 

Fig.4  Pipeline stages 

The pipeline operations are 

Fe1: First stage of instruction fetch where address is issued to 

memory and data returns from memory 

Fe2: Second stage of instruction fetch and branch prediction. 
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De: Instruction decode. 

Iss:Register read and instruction issue. 

Sh:Shifter stage. 

ALU: Main integer operation calculation. 

Sat: Pipeline stage to enable saturation of integer results. 

WBex: Write back of data from the multiply or main 

execution pipelines. 

MAC1: First stage of the multiply-accumulate pipeline. 

MAC2:Second stage of the multiply-accumulate pipeline. 

MAC3: Third stage of the multiply-accumulate pipeline. 

ADD: Address generation stage. 

DC1: First stage of data cache access. 

DC2 :Second stage of data cache access. 

WBls: Write back of data from the Load Store Unit. 

By overlapping the various stages of operation, the 

ARM1176JZF-S processor maximizes the clock rate 

achievable to execute each instruction. It delivers a 

throughput approaching one instruction for each cycle. 

The Fetch stages can hold up to four instructions, where 

branch prediction is performed on instructions ahead of 

execution of earlier instructions. 

The Issue and Decode stages can contain any instruction in 

parallel with a predicted branch. 

The Execute, Memory, and Write stages can contain a 

predicted branch, an ALU or multiply instruction, a load/store 

multiple instruction, and a coprocessor instruction in parallel 

execution. 

PB1176JZF-S The Platform Baseboard for ARM1176JZF-S 

is a software and hardware development board based on 

ARM architecture v6: 

• If the baseboard is used on its own, it is a fast software 

development platform with an ARM1176JZF processor and a 

memory system running at ASIC speed. The basic system 

provides a good platform for developing systems supporting 

ARM11 processors that feature TrustZone® Technology, 

CoreSight™, and Intelligent Energy Management (IEM™). 

The ARM1176JZF-S development chip is much faster than a 

software simulator or a core implemented in RealView Logic 

Tiles. 

• If FPGA-based RealView Logic Tiles are stacked on the 

Platform Baseboard, custom AMBA v3 peripherals, 

processors and DSPs can be added to the ARM subsystem 

provided by the baseboard. The expanded system can be used 

to develop Advanced Microprocessor Bus 

Architecture (AMBA®) compatible peripherals and to test 

ASIC designs. The fast processor core and the peripherals 

present in the ARM1176JZF-S development chip, 

PB1176JZF-S FPGA, and RealView Logic Tile FPGA enable 

you to develop and test complex systems operating at, or 

near, their target operating frequency. 

The major components in the PB1176JZF-S are: 

• The ARM1176JZF-S development chip 

• An FPGA containing additional peripherals and controllers 

• 128MB of 32-bit wide Mobile DDR RAM 

• 8MB of 32-bit wide static PSRAM 

• 2 x 64MB of 32-bit wide NOR flash 

• Up to 320MB of static memory in an optional 

PISMO™static memory expansion board 

• Programmable clock generators 

• Time-Of-Year (TOY) clock with backup battery 

• Connectors for VGA, color LCD display(CLCD) interface 

board, PCI, UART, GPIO,  keyboard/mouse, Smart    Card, 

USB, audio, MMC, SSP, and Ethernet 

• Real View Logic Tile connector for one or more optional 

RealView Logic Tiles to develop   custom IP 

• Debug and test connectors for JTAG, ChipScope, and 

CoreSight Trace port 

• DIP switches and LEDs 

• 2 row by 16 character LCD display 

• Power conversion and voltage control circuitry 

 

The UART is an Advanced Microcontroller Bus Architecture 

(AMBA) compliant 

System-on-Chip (SoC) peripheral that is developed, tested, 

and licensed by ARM. 

The UART is an AMBA slave module that connects to the 

Advanced Peripheral Bus 

(APB). The UART includes an Infrared Data Association 

(IrDA) Serial InfraRed (SIR) protocol ENcoder/DECoder 

(ENDEC). 



A. Sneha et al. / Journal of Computing Technologies            ISSN 2278 – 3814 

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED    
75 

 

The UART provides 

• Compliance to the AMBA Specification (Rev 2.0) onwards 

for easy integration  Into  SoC implementation. 

• Programmable use of UART or IrDA SIR input/output. 

• Separate 32×8 transmit and 32×12 receive First-In, First-

Out (FIFO) memory buffers to reduce CPU  interrupts. 

• Programmable FIFO disabling for 1-byte depth. 

• Programmable baud rate generator. This enables division of 

the reference clock  by (1×16) to (65535×16) and generates 

an internal ×16 clock. The divisor can be a fractional number 

enabling you to use any clock with a frequency >3.6864MHz 

as the reference clock. 

• Standard asynchronous communication bits (start, stop and 

parity). These are added prior to transmission and removed 

on reception. 

• Independent masking of transmit FIFO, receive FIFO, 

receive timeout, modem status, and error condition interrupts. 

• Support for Direct Memory Access (DMA). 

• False start bit detection. 

• Line break generation and detection. 

• Support of the modem control functions CTS, DCD, DSR, 

RTS, DTR, and RI. 

• Programmable hardware flow control. 

• Fully-programmable serial interface characteristics: 

   — data can be 5, 6, 7, or 8 bits 

   — even, odd, stick, or no-parity bit generation and            

detection 

   — 1 or 2 stop bit generation 

   — baud rate generation, dc up to UARTCLK/16 

• IrDA SIR ENDEC block providing: 

    — programmable use of IrDA SIR or UART input/output 

   — support of IrDA SIR ENDEC functions for data rates up 

to 115200 bps half-duplex 

   — support of normal 3/16 and low-power (1.41-2.23μs) bit 

durations 

   — programmable division of the UARTCLK reference 

clock to generate the appropriate bit duration for low-power 

IrDA mode. 

• Identification registers that uniquely identify the UART. 

These can be used by an operating system to automatically 

configure itself. 

UART operation Control data is written to the UART Line 

Control Register, UARTLCR. This register is 30-bits wide 

internally, but is externally accessed through the APB 

interface by writes to the following registers: 

UARTLCR_H Defines the: 

• transmission parameters 

• word length 

• buffer mode 

• number of transmitted stop bits 

• parity mode 

• break generation. 

UARTIBRD Defines the integer baud rate divider 

UARTFBRD Defines the fractional baud rate divider 

III. Micro Kernel design and code development: 

A microkernel is the near-minimum amount of 

software that can provide the mechanisms needed to 

implement an operating system. These mechanisms include 

low-level address space management, thread management,

 and inter-process communication (IPC). In terms of 

source code size, microkernels (as a rule of thumb) tend to be 

under 10,000 lines of code. MINIX3 for example has around 

4,000 lines of code. Kernels larger than 20,000 lines are 

generally not considered microkernels. As an operating 

system design approach, microkernels permit typical 

operating system services, such as device drivers, protocol 

stacks, file systems code, to run in user space. If the hardware 

provides multiple rings or CPU modes, the microkernel is the 

only software executing at the most privileged level 

(generally referred to as supervisor or kernel mode). 

Microkernels are closely related to exokernels.
 
 They also 

have much in common with hypervisors, but the latter make 

no claim to minimality and are specialized to 

supporting virtual machines; indeed, the L4 

microkernel frequently finds use in a hypervisor capacity. 

The historical term nanokernel has been used to 

distinguish modern, high-performance microkernels from 

earlier implementations which still contained many system 

services. However, nanokernels have all but replaced their 

microkernel progenitors, and the term has fallen into disuse.  

 Microkernel includes the following concepts 

1.  Task related functions for task creation, priority 

changing, deletion etc. 
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2.  Scheduler for scheduling using priority pre-

emptive feature 

3. Context switch to swap two tasks 

4. Semaphore related functions for  intertask 

communication 

 

        The real-time microkernel has two major 

responsibilities. First one is Task management and  

scheduling and second one is Inter task communication and 

synchronization as explained below. 

 

   Task management and scheduling 

Task (or “process”, or “thread”) management is a 

primary job of the operating system: tasks must be 

created and deleted while the  system is  running;  tasks  

can  change  their priority  levels,  their  timing  

constraints,  their memory needs; etcetera. Task 

management for an  RT Kernel is a bit more critical 

than for a general   purpose  OS.  If  a  real-time  task  

is created,  it   has  to  get  the  memory  it  needs 

without delay, and that memory has to be locked in  

main  memory   in  order  to  avoid  access latencies  

due  to  swapping;  changing  run-time priorities 

influences the run-time behavior of the whole system 

and hence  also the predictability which is so important 

for an RTOS. So, dynamic process management is a  

potential problem for an RTOS, therefore not 

recommended, though it is implemented in this project. 

In general, multiple tasks will be active at the same 

time, and the OS is responsible for sharing   the   

available   resources   (CPU  time, memory, etc.) over 

the tasks. The CPU is one of the  important  resources,  

and  deciding  how  to share   the   CPU    over   the   

tasks   is   called “scheduling”.  The   general  trade-off  

made  in scheduling  algorithms  is  between,  on  the  

one hand, the simplicity (and  hence efficiency) of 

the  algorithm,  and,  on  the   other  hand,  its 

optimality. Real-time operating  systems favour simple  

scheduling  algorithms,   because  these take   a   small   

and   deterministic   amount   of computing   time,   and   

require   little   memory footprint for their code. 

        General purpose and real-time operating systems 

differ considerably in their scheduling algorithms. They 

use the same basic principles, but apply them 

differently because they have to satisfy different 

performance criterions. general purpose OS aims at 

maximum average throughput, a real-time OS aims at 

deterministic behaviour and an embedded OS wants to 

keep memory footprint and power consumption low. A 

large variety of “real-time” scheduling algorithms 

exists, but some are standard in most real-time operating 

systems: static priority scheduling, earliest deadline first 

and rate monotic scheduling.. In this project a dynamic 

priority pre- emptive  scheduling  algorithm is  

implemented. Shown Below are the prototypes of the 

Task Management and scheduling related functions 

implemented in the project. 

 

    osrc_t thread_create (int 32*ptid, int32 pri, void 

(*pfunc)(void)) 
 
Creates a thread with the entry point pointed to by  

pfunc,  and  makes  it  ready  to  run.  If  the priority   

is  higher  than  the  current  thread’s priority, it 

schedules the created thread. Returns OK if successful, 

or ERR on error. 
 
void thread_suspend (int32 tid) 

Suspends the specified task (puts it in the wait state). 

void thread_resume (int32 tid) 
 
Resumes the specified task (puts it in the ready/running 

state depending on the priority). 
 
int32 thread self (void) 
 
Returns the id of the current task. 
 
int32 thread_getpri (int32 tid) 
 
Returns the priority of the specified task. 
 
myrc_t thread_setpri (int32 tid, int32 pri) 
 

Sets the priority of the specified task. 

Additionally,  performs  scheduling  if  required due to 

the change in the task priority. 
 
void os_init (void) 
 
initializes the common OS data structures. Calls 

thread_init  for  thread  specific  initializations. Later,   

this   function   will   call   other   object initialization 

functions. 
 
void thread_init (void) 
 

Initializes thread specific data structures. 

    void thread_schedule (void) 
 
Runs the thread scheduler. 
 

void  thread_switch_context  (int32  *pcurcxt, int32 

*pnxtcxt) (Assembly code) 
 

Internal function to do the context switch. Takes in the 

pointers to the arrays containing contexts of  the   

current  and  new  task.  Swaps  these contexts and 

returns to new task. 
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Communication and synchronization 
Second major responsibility of an OS is commonly  known  

under  the  name  of  Inter- Process Communication (IPC). 

(“Process” is, in this context, just another name for “task”.) 

The general name IPC collects a set of programming 

primitives  that  the  operating  system   makes available   

to   tasks   that   need   to   exchange information  with  

other  tasks,  or  synchronize their actions. Again, an RTOS 

has to make sure that this communication and 

synchronization take place in a deterministic way. Besides 

communication and synchronization with other tasks that run 

on the same computer, some tasks also need to talk to other 

computers, or to peripheral hardware (such as analog input or 

output cards). This involves some peripheral hardware, such 

as a serial line or a network, and special purpose device 

drivers. In this project Inter task communication is 

carried out using semaphores. Semaphore is an object used 

for intertask communication  in  operating  system.  It  is  for 

informing the kernel about the status of the task for  its  

waiting  for  a  resource  or  releasing  a resource.  Every  

semaphore  must  be  created before it is used. Below are 

the prototypes of the Inter Task Communication 

Synchronization related functions implemented in the project. 

osrc_t ossem_create (int32 count, int32 *psid) 
 
Creates a semaphore with the specified initial count 

and returns the id in *psid. 
 
Returns  OK  if  successful,  or  ERR  on error. 
 
void sem_post (int32 semid) 
 
Posts the specified semaphore. Reschedules the tasks if 

posting the semaphore could cause a task switch. 

    void sem_wait (int32 sid) 

Waits for a semaphore. If the semaphore is unavailable, 

puts the current task in waiting state and schedules 

another task. 

 

 

Context  switching  is  done  when  a  processor 

switches from one task to another task. Context is 

mainly the Register snapshot of the processor 

when a task is under execution. This function is called  

after  the  scheduler  if  task  switching  is required.  In  

this  project  is  this  function is implemented using 

ARM assembly language programming. This routine 

saves all the registers  of  the  first  task  on  the  stack  

of  the  task  or context  area and restores all the 

registers  from the stack or context area of the next 

task. At the end of this task  the control switches to 

second task. 

 

void thread_switch_context (int32 *pcurcxt, int32 

*pnxtcxt) (Assembly code)  

 

; //save all the registers of current task 

   STR R2,[R0,#0X0]   

   STR R3,[R0,#0X4] 

   STR R4,[R0,#0X8] 

   STR R5,[R0,#0XC] 

   STR R6,[R0,#0X10] 

   STR R7,[R0,#0X14] 

   STR R8,[R0,#0X18] 

   STR R9,[R0,#0X1C] 

   STR R10,[R0,#0X20] 

   STR R11,[R0,#0X24] 

   STR R12,[R0,#0X28] 

   STR R12,[R0,#0X2C]  

   STR R14,[R13] 

   SUB R13,R13,#04 

   STR R13,[R0,#0X4C] 

 

Restore all the second task register  

values  from the TCB  to Processor  

   LDR R2,[R1,#0X0]   

   LDR R3,[R1,#0X4] 

   LDR R4,[R1,#0X8] 

   LDR R5,[R1,#0XC] 

   LDR R6,[R1,#0X10] 

   LDR R7,[R1,#0X14] 

   LDR R8,[R1,#0X18] 

   LDR R9,[R1,#0X1C] 

   LDR R10,[R1,#0X20] 

   LDR R11,[R1,#0X24] 

   LDR R12,[R1,#0X2C] 

   LDR R12,[R1,#0X28] 

   LDR R0,[R1,#0X4C] 

   ADD R0,R0,#04 

   MOV R13,R0 

   LDR R14,[R13] 

   BX R14 

   END 
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               Fig.5 microkernel design flow 

 
 

Conclusion: A real time microkernel for ARM1176JZF-S is 

successfully developed and demonstrated in this project. The 

tools used are Real View Development Suite(RVDS) for 

Software development and debugging. Microkernel 

developed in this project can be used for multi-tasking. The 

application areas are avionics on board computers, industry 

process automation, and auto mobile electronics. Microkernel 

developed in this project has a footprint of 28kb. This can be 

further reduced and interrupts can also be used efficiently by 

using advanced features of ARM processors. 

Applications: Multi tasking embedded systems 

applications like onboard computers for Avionics 

Embedded systems like printers, digital storage 

oscilloscope. Which occupies less memory. 
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