
A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
71

Design and development of microkernel

for ARM1176JZF-S
 1

A.Sneha,
2
P.Shakira,

3
N. Neelima

12
Department of Electronics and communications Engineering, MRITS, HYDERABAD.

1
sneha.anantharam@gmail.com,

2
 shakira15210@gmail.com,

3
nagalla1981@gmail.com

Abstract- In this project a 32-task Real Time

Microkernel is designed using which multi tasking can be

done on the targeted processor ARM1176JZFS from

ARM limited. The Micro kernel includes a preemptive

priority scheduler and context switching modules for

carrying out multi-tasking. Routines to create and

manage tasks will be developed. Once created, the tasks will

be scheduled by our own scheduler automatically.

Subsequently, inter task communication mechanism is

added to this scheduler, to make it a small real-time

kernel. Tool we are using RVDS(Real view development

suit)

Keywords— I.P.C, thread creation, scheduling, context

switching.

I Introduction

Real-time systems are those systems whose response is

deterministic in time. A real-time microkernel is the near-

minimum amount of software that can provide the

mechanisms needed to implement a real-time operating

system. These mechanisms include low-level address space

management, thread management, and inter-process

communication (I.P.C). As an operating system design

approach, microkernels permit typical operating system

services, such as device drivers, protocol stacks, file

systems and user interface code, to run in user space.

Throughout this document OS and Microkernel are used for

same meaning though OS includes device drivers and file

system management, which is not present in microkernel.

Two sets of functions are developed in this project. First

one is Kernel functions and second is application functions.

Kernel functions are mainly for carrying out task creation,

multi-tasking and Inter task communication. The number of

application functions can be from 1 to 32. Each of these

application functions is created as a task by the microkernel

and scheduled by the pre-emptive priority scheduler. Multi

tasking of these application tasks is demonstrated in this

project. Following section explains the responsibilities of the

various functions implemented in the Kernel along with the

function prototypes of the Kernel functions.

Fig 1 Difference between monolithic kernel and microkernel

In computing, the kernel is the central component of most

computer operating systems; it is a bridge between

applications and the actual data processing done at the

hardware level. The kernel's responsibilities include

managing the system's resources (the communication

between hardware and software components).
[1]

 Usually as a

basic component of an operating system, a kernel can provide

the lowest-level abstraction layer for the resources

(especially processors and I/O devices) that application

software must control to perform its function. It typically

makes these facilities available

to application processes through inter-process

communication mechanisms and system calls.

Operating system tasks are done differently by

different kernels, depending on their design and

implementation. While monolithic kernels execute all the

operating system code in the same address space to increase

the performance of the system, microkernels run most of the

operating system services in user space as servers, aiming to

improve maintainability and modularity of the operating

system.
[2]

 A range of possibilities exists between these two

extremes.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Kernel_(computing)#cite_note-Wulf74-0
http://en.wikipedia.org/wiki/Abstraction_layer
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/System_call
http://en.wikipedia.org/wiki/Monolithic_kernel
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Microkernel
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/Kernel_(computing)#cite_note-mono-micro-1

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
72

Fig 2 Kernel connecting the application software to the hardware of a

computer

In most cases, the boot loader starts executing the

kernel in supervisor mode. The kernel then initializes itself

and starts the first process. After this, the kernel does not

typically execute directly, only in response to external events

(e.g., via system calls used by applications to request services

from the kernel, or via interrupts used by the hardware to

notify the kernel of events). Additionally, the kernel typically

provides a loop that is executed whenever no processes are

available to run; this is often called the idle process.

Kernel development is considered one of the most complex

and difficult tasks in programming. Its central position in an

operating system implies the necessity for good performance,

which defines the kernel as a critical piece of software and

makes its correct design and implementation difficult. For

various reasons, a kernel might not even be able to use

the abstraction mechanisms it provides to other software.

Such reasons include memory management concerns (for

example, a user-mode function might rely on memory being

subject to demand paging, but as the kernel itself provides

that facility it cannot use it, because then it might not remain

in memory to provide that facility) and lack of reentrancy,

thus making its development even more difficult for software

engineers.

A kernel will usually provide features for low-

level scheduling of processes (dispatching), inter-process

 communication, process synchronization, context

 switching, manipulation of process control

blocks, interrupt handling, process creation and destruction,

and process suspension and resumption.

II. ARM1176JZF-S PROCESSOR

The ARM1176JZF-S processor incorporates an integer core

that implements the ARM11 ARM architecture v6. It

supports the ARM and Thumb™ instruction sets, Jazelle

technology to enable direct execution of Java byte codes, and

a range of SIMDDSP instructions that operate on 16-bit or 8-

bit data values in 32-bit registers.

The ARM1176JZF-S processor features

• TrustZone™ security extensions

• Provision for Intelligent Energy Management (IEM™)

• High-speed Advanced Microprocessor Bus Architecture

(AMBA) Advanced

 Extensible Interface (AXI) level two interfaces supporting

prioritized

 multiprocessor implementations.

• An integer core with integral Embedded ICE-RT logic

• An eight-stage pipeline

• Branch prediction with return stack

• Low interrupt latency configuration

• Internal coprocessors CP14 and CP15

• Vector Floating-Point (VFP) coprocessor support

• External coprocessor interface

• Instruction and Data Memory Management Units (MMUs),

managed using

 MicroTLB structures backed by a unified Main TLB

• Instruction and data caches, including a non-blocking data

cache with

 Hit-Under-Miss (HUM)

• Virtually indexed and physically addressed caches

• 64-bit interface to both caches

• Level one Tightly-Coupled Memory (TCM) that you can use

as a local RAM with

 DMA

• Trace support

• JTAG-based debug.

TrustZone security extensions

The ARM1176JZF-S processor supports TrustZone security

extensions to provide a secure environment for software. This

section summarizes processor elements that TrustZone uses.

The TrustZone approach to integrated system security

depends on an established trusted code base. The trusted code

is a relatively small block that runs in the Secure world in the

processor and provides the foundation for security throughout

the system. This security applies from system boot and

enforces a level of trust at each stage of a transaction.

The processor has:

• seven operating modes that can be either Secure or Non-

secure

• Secure Monitor mode, that is always Secure.

http://en.wikipedia.org/wiki/Boot_loader
http://en.wikipedia.org/wiki/Supervisor_mode
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Demand_paging
http://en.wikipedia.org/wiki/Reentrant_(subroutine)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Process_control_block
http://en.wikipedia.org/wiki/Process_control_block
http://en.wikipedia.org/wiki/Interrupt

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
73

Except when the processor is in Secure Monitor mode, the

NS bit in the Secure

Configuration Register determines whether the processor runs

code in the Secure or Non-secure worlds. The Secure

Configuration Register is in CP15 register c1.

Secure Monitor mode is used to switch operation between the

Secure and Non-secure worlds.

Secure Monitor mode uses these banked registers:

R13_mon Stack Pointer

R14_mon Link Register

SPSR_mon Saved Program Status Register

The processor implements this instruction to enter Secure

Monitor mode:

SMC Secure Monitor Call, switches from one of the

privileged modes to the

Secure Monitor mode.

Operating modes

In all states there are eight modes of operation:

• User mode is the usual ARM program execution state, and

is used for executing

 most application programs

• Fast interrupt (FIQ) mode is used for handling fast

interrupts

• Interrupt (IRQ) mode is used for general-purpose interrupt

handling

• Supervisor mode is a protected mode for the OS

• Abort mode is entered after a data abort or prefetch abort

• System mode is a privileged user mode for the OS

• Undefined mode is entered when an undefined instruction

exception occurs.

• Secure Monitor mode is a Secure mode for the TrustZone

Secure Monitor code.

 Fig.3 lists the mode structure for the processor

Pipeline stages

• the two Fetch stages

• a Decode stage

• an Issue stage

• the four stages of the ARM1176JZF-S integer execution

pipeline.

These eight stages make up the processor pipeline.

Fig.4 Pipeline stages

The pipeline operations are

Fe1: First stage of instruction fetch where address is issued to

memory and data returns from memory

Fe2: Second stage of instruction fetch and branch prediction.

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
74

De: Instruction decode.

Iss:Register read and instruction issue.

Sh:Shifter stage.

ALU: Main integer operation calculation.

Sat: Pipeline stage to enable saturation of integer results.

WBex: Write back of data from the multiply or main

execution pipelines.

MAC1: First stage of the multiply-accumulate pipeline.

MAC2:Second stage of the multiply-accumulate pipeline.

MAC3: Third stage of the multiply-accumulate pipeline.

ADD: Address generation stage.

DC1: First stage of data cache access.

DC2 :Second stage of data cache access.

WBls: Write back of data from the Load Store Unit.

By overlapping the various stages of operation, the

ARM1176JZF-S processor maximizes the clock rate

achievable to execute each instruction. It delivers a

throughput approaching one instruction for each cycle.

The Fetch stages can hold up to four instructions, where

branch prediction is performed on instructions ahead of

execution of earlier instructions.

The Issue and Decode stages can contain any instruction in

parallel with a predicted branch.

The Execute, Memory, and Write stages can contain a

predicted branch, an ALU or multiply instruction, a load/store

multiple instruction, and a coprocessor instruction in parallel

execution.

PB1176JZF-S The Platform Baseboard for ARM1176JZF-S

is a software and hardware development board based on

ARM architecture v6:

• If the baseboard is used on its own, it is a fast software

development platform with an ARM1176JZF processor and a

memory system running at ASIC speed. The basic system

provides a good platform for developing systems supporting

ARM11 processors that feature TrustZone® Technology,

CoreSight™, and Intelligent Energy Management (IEM™).

The ARM1176JZF-S development chip is much faster than a

software simulator or a core implemented in RealView Logic

Tiles.

• If FPGA-based RealView Logic Tiles are stacked on the

Platform Baseboard, custom AMBA v3 peripherals,

processors and DSPs can be added to the ARM subsystem

provided by the baseboard. The expanded system can be used

to develop Advanced Microprocessor Bus

Architecture (AMBA®) compatible peripherals and to test

ASIC designs. The fast processor core and the peripherals

present in the ARM1176JZF-S development chip,

PB1176JZF-S FPGA, and RealView Logic Tile FPGA enable

you to develop and test complex systems operating at, or

near, their target operating frequency.

The major components in the PB1176JZF-S are:

• The ARM1176JZF-S development chip

• An FPGA containing additional peripherals and controllers

• 128MB of 32-bit wide Mobile DDR RAM

• 8MB of 32-bit wide static PSRAM

• 2 x 64MB of 32-bit wide NOR flash

• Up to 320MB of static memory in an optional

PISMO™static memory expansion board

• Programmable clock generators

• Time-Of-Year (TOY) clock with backup battery

• Connectors for VGA, color LCD display(CLCD) interface

board, PCI, UART, GPIO, keyboard/mouse, Smart Card,

USB, audio, MMC, SSP, and Ethernet

• Real View Logic Tile connector for one or more optional

RealView Logic Tiles to develop custom IP

• Debug and test connectors for JTAG, ChipScope, and

CoreSight Trace port

• DIP switches and LEDs

• 2 row by 16 character LCD display

• Power conversion and voltage control circuitry

The UART is an Advanced Microcontroller Bus Architecture

(AMBA) compliant

System-on-Chip (SoC) peripheral that is developed, tested,

and licensed by ARM.

The UART is an AMBA slave module that connects to the

Advanced Peripheral Bus

(APB). The UART includes an Infrared Data Association

(IrDA) Serial InfraRed (SIR) protocol ENcoder/DECoder

(ENDEC).

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
75

The UART provides

• Compliance to the AMBA Specification (Rev 2.0) onwards

for easy integration Into SoC implementation.

• Programmable use of UART or IrDA SIR input/output.

• Separate 32×8 transmit and 32×12 receive First-In, First-

Out (FIFO) memory buffers to reduce CPU interrupts.

• Programmable FIFO disabling for 1-byte depth.

• Programmable baud rate generator. This enables division of

the reference clock by (1×16) to (65535×16) and generates

an internal ×16 clock. The divisor can be a fractional number

enabling you to use any clock with a frequency >3.6864MHz

as the reference clock.

• Standard asynchronous communication bits (start, stop and

parity). These are added prior to transmission and removed

on reception.

• Independent masking of transmit FIFO, receive FIFO,

receive timeout, modem status, and error condition interrupts.

• Support for Direct Memory Access (DMA).

• False start bit detection.

• Line break generation and detection.

• Support of the modem control functions CTS, DCD, DSR,

RTS, DTR, and RI.

• Programmable hardware flow control.

• Fully-programmable serial interface characteristics:

 — data can be 5, 6, 7, or 8 bits

 — even, odd, stick, or no-parity bit generation and

detection

 — 1 or 2 stop bit generation

 — baud rate generation, dc up to UARTCLK/16

• IrDA SIR ENDEC block providing:

 — programmable use of IrDA SIR or UART input/output

 — support of IrDA SIR ENDEC functions for data rates up

to 115200 bps half-duplex

 — support of normal 3/16 and low-power (1.41-2.23μs) bit

durations

 — programmable division of the UARTCLK reference

clock to generate the appropriate bit duration for low-power

IrDA mode.

• Identification registers that uniquely identify the UART.

These can be used by an operating system to automatically

configure itself.

UART operation Control data is written to the UART Line

Control Register, UARTLCR. This register is 30-bits wide

internally, but is externally accessed through the APB

interface by writes to the following registers:

UARTLCR_H Defines the:

• transmission parameters

• word length

• buffer mode

• number of transmitted stop bits

• parity mode

• break generation.

UARTIBRD Defines the integer baud rate divider

UARTFBRD Defines the fractional baud rate divider

III. Micro Kernel design and code development:

A microkernel is the near-minimum amount of

software that can provide the mechanisms needed to

implement an operating system. These mechanisms include

low-level address space management, thread management,

 and inter-process communication (IPC). In terms of

source code size, microkernels (as a rule of thumb) tend to be

under 10,000 lines of code. MINIX3 for example has around

4,000 lines of code. Kernels larger than 20,000 lines are

generally not considered microkernels. As an operating

system design approach, microkernels permit typical

operating system services, such as device drivers, protocol

stacks, file systems code, to run in user space. If the hardware

provides multiple rings or CPU modes, the microkernel is the

only software executing at the most privileged level

(generally referred to as supervisor or kernel mode).

Microkernels are closely related to exokernels.

 They also

have much in common with hypervisors, but the latter make

no claim to minimality and are specialized to

supporting virtual machines; indeed, the L4

microkernel frequently finds use in a hypervisor capacity.

The historical term nanokernel has been used to

distinguish modern, high-performance microkernels from

earlier implementations which still contained many system

services. However, nanokernels have all but replaced their

microkernel progenitors, and the term has fallen into disuse.

 Microkernel includes the following concepts

1. Task related functions for task creation, priority

changing, deletion etc.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/MINIX
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Protocol_stack
http://en.wikipedia.org/wiki/Protocol_stack
http://en.wikipedia.org/wiki/Protocol_stack
http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/Hierarchical_protection_domains
http://en.wikipedia.org/wiki/CPU_modes
http://en.wikipedia.org/wiki/Kernel_mode
http://en.wikipedia.org/wiki/Exokernel
http://en.wikipedia.org/wiki/Hypervisor
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/L4_microkernel
http://en.wikipedia.org/wiki/L4_microkernel
http://en.wikipedia.org/wiki/L4_microkernel
http://en.wikipedia.org/wiki/Nanokernel

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
76

2. Scheduler for scheduling using priority pre-

emptive feature

3. Context switch to swap two tasks

4. Semaphore related functions for intertask

communication

 The real-time microkernel has two major

responsibilities. First one is Task management and

scheduling and second one is Inter task communication and

synchronization as explained below.

 Task management and scheduling

Task (or “process”, or “thread”) management is a

primary job of the operating system: tasks must be

created and deleted while the system is running; tasks

can change their priority levels, their timing

constraints, their memory needs; etcetera. Task

management for an RT Kernel is a bit more critical

than for a general purpose OS. If a real-time task

is created, it has to get the memory it needs

without delay, and that memory has to be locked in

main memory in order to avoid access latencies

due to swapping; changing run-time priorities

influences the run-time behavior of the whole system

and hence also the predictability which is so important

for an RTOS. So, dynamic process management is a

potential problem for an RTOS, therefore not

recommended, though it is implemented in this project.

In general, multiple tasks will be active at the same

time, and the OS is responsible for sharing the

available resources (CPU time, memory, etc.) over

the tasks. The CPU is one of the important resources,

and deciding how to share the CPU over the

tasks is called “scheduling”. The general trade-off

made in scheduling algorithms is between, on the

one hand, the simplicity (and hence efficiency) of

the algorithm, and, on the other hand, its

optimality. Real-time operating systems favour simple

scheduling algorithms, because these take a small

and deterministic amount of computing time, and

require little memory footprint for their code.

 General purpose and real-time operating systems

differ considerably in their scheduling algorithms. They

use the same basic principles, but apply them

differently because they have to satisfy different

performance criterions. general purpose OS aims at

maximum average throughput, a real-time OS aims at

deterministic behaviour and an embedded OS wants to

keep memory footprint and power consumption low. A

large variety of “real-time” scheduling algorithms

exists, but some are standard in most real-time operating

systems: static priority scheduling, earliest deadline first

and rate monotic scheduling.. In this project a dynamic

priority pre- emptive scheduling algorithm is

implemented. Shown Below are the prototypes of the

Task Management and scheduling related functions

implemented in the project.

 osrc_t thread_create (int 32*ptid, int32 pri, void

(*pfunc)(void))

Creates a thread with the entry point pointed to by

pfunc, and makes it ready to run. If the priority

is higher than the current thread’s priority, it

schedules the created thread. Returns OK if successful,

or ERR on error.

void thread_suspend (int32 tid)

Suspends the specified task (puts it in the wait state).

void thread_resume (int32 tid)

Resumes the specified task (puts it in the ready/running

state depending on the priority).

int32 thread self (void)

Returns the id of the current task.

int32 thread_getpri (int32 tid)

Returns the priority of the specified task.

myrc_t thread_setpri (int32 tid, int32 pri)

Sets the priority of the specified task.

Additionally, performs scheduling if required due to

the change in the task priority.

void os_init (void)

initializes the common OS data structures. Calls

thread_init for thread specific initializations. Later,

this function will call other object initialization

functions.

void thread_init (void)

Initializes thread specific data structures.

 void thread_schedule (void)

Runs the thread scheduler.

void thread_switch_context (int32 *pcurcxt, int32

*pnxtcxt) (Assembly code)

Internal function to do the context switch. Takes in the

pointers to the arrays containing contexts of the

current and new task. Swaps these contexts and

returns to new task.

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
77

Communication and synchronization
Second major responsibility of an OS is commonly known

under the name of Inter- Process Communication (IPC).

(“Process” is, in this context, just another name for “task”.)

The general name IPC collects a set of programming

primitives that the operating system makes available

to tasks that need to exchange information with

other tasks, or synchronize their actions. Again, an RTOS

has to make sure that this communication and

synchronization take place in a deterministic way. Besides

communication and synchronization with other tasks that run

on the same computer, some tasks also need to talk to other

computers, or to peripheral hardware (such as analog input or

output cards). This involves some peripheral hardware, such

as a serial line or a network, and special purpose device

drivers. In this project Inter task communication is

carried out using semaphores. Semaphore is an object used

for intertask communication in operating system. It is for

informing the kernel about the status of the task for its

waiting for a resource or releasing a resource. Every

semaphore must be created before it is used. Below are

the prototypes of the Inter Task Communication

Synchronization related functions implemented in the project.

osrc_t ossem_create (int32 count, int32 *psid)

Creates a semaphore with the specified initial count

and returns the id in *psid.

Returns OK if successful, or ERR on error.

void sem_post (int32 semid)

Posts the specified semaphore. Reschedules the tasks if

posting the semaphore could cause a task switch.

 void sem_wait (int32 sid)

Waits for a semaphore. If the semaphore is unavailable,

puts the current task in waiting state and schedules

another task.

Context switching is done when a processor

switches from one task to another task. Context is

mainly the Register snapshot of the processor

when a task is under execution. This function is called

after the scheduler if task switching is required. In

this project is this function is implemented using

ARM assembly language programming. This routine

saves all the registers of the first task on the stack

of the task or context area and restores all the

registers from the stack or context area of the next

task. At the end of this task the control switches to

second task.

void thread_switch_context (int32 *pcurcxt, int32

*pnxtcxt) (Assembly code)

; //save all the registers of current task

 STR R2,[R0,#0X0]

 STR R3,[R0,#0X4]

 STR R4,[R0,#0X8]

 STR R5,[R0,#0XC]

 STR R6,[R0,#0X10]

 STR R7,[R0,#0X14]

 STR R8,[R0,#0X18]

 STR R9,[R0,#0X1C]

 STR R10,[R0,#0X20]

 STR R11,[R0,#0X24]

 STR R12,[R0,#0X28]

 STR R12,[R0,#0X2C]

 STR R14,[R13]

 SUB R13,R13,#04

 STR R13,[R0,#0X4C]

Restore all the second task register

values from the TCB to Processor

 LDR R2,[R1,#0X0]

 LDR R3,[R1,#0X4]

 LDR R4,[R1,#0X8]

 LDR R5,[R1,#0XC]

 LDR R6,[R1,#0X10]

 LDR R7,[R1,#0X14]

 LDR R8,[R1,#0X18]

 LDR R9,[R1,#0X1C]

 LDR R10,[R1,#0X20]

 LDR R11,[R1,#0X24]

 LDR R12,[R1,#0X2C]

 LDR R12,[R1,#0X28]

 LDR R0,[R1,#0X4C]

 ADD R0,R0,#04

 MOV R13,R0

 LDR R14,[R13]

 BX R14

 END

A. Sneha et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED
78

 Fig.5 microkernel design flow

Conclusion: A real time microkernel for ARM1176JZF-S is

successfully developed and demonstrated in this project. The

tools used are Real View Development Suite(RVDS) for

Software development and debugging. Microkernel

developed in this project can be used for multi-tasking. The

application areas are avionics on board computers, industry

process automation, and auto mobile electronics. Microkernel

developed in this project has a footprint of 28kb. This can be

further reduced and interrupts can also be used efficiently by

using advanced features of ARM processors.

Applications: Multi tasking embedded systems

applications like onboard computers for Avionics

Embedded systems like printers, digital storage

oscilloscope. Which occupies less memory.

References:

[1] www.csie.ntu.edu.tw/~ktw/rts/uCOSII- prn.pdf

[2] www.ucos-ii.com,

[3]http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183g/

 DDI0183G_uart_pl011_r1p5_trm.pdf

[4]http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI

0301H_arm1176jzfs_r0p7_trm.pdf

[5]http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi

0190b/I1002697.html

[6]http://infocenter.arm.com/help/topic/com.arm.

 doc.ddi0190b/DDI0190.pdf

[7]http://infocenter.arm.com/help/topic/com.arm.doc.DDI0

 190B_gpio_PL061_trm

[8]http://infocenter.arm.com/help/topic/com.arm.doc.DUI0

 425F_realview_platform_baseboard_for_arm1176jzf_ug

 Real-time systems by Jane W.S.Liu

http://www.csie.ntu.edu.tw/~ktw/rts/uCOSII-prn.pdf
http://www.csie.ntu.edu.tw/~ktw/rts/uCOSII-prn.pdf
http://www.ucos-ii.com/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183g/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0190b/I1002697.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0190b/I1002697.html
http://infocenter.arm.com/help/topic/com.arm
http://infocenter.arm.com/help/topic/com.arm.doc.DDI0
http://infocenter.arm.com/help/topic/com.arm.doc.DUI0

