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Abstract— A low rate distributed denial of service (DDoS) attack 

has importance of hiding its traffic because it is very much like 

normal traffic. It has the capacity to avoid the current anomaly-

based detection schemes. An information metric can analysis the 

differences of network traffic with various probability 

distributions. In this paper, we propose using two new information 

metrics such as the generalized entropy metric and the 

information distance metric to detect slow-rate DDoS attacks by 

calculation the difference between legal traffic and attack traffic. 

The proposed generalized entropy metric can detect attacks 

several hops earlier (three hops earlier while the order α=10 ) than 

the traditional Shannon metric. The proposed information 

distance metric outperforms (six hops earlier while the order 

α=10) the popular Kullback–Leibler divergence approach as it can 

clearly enlarge the adjudication distance and then obtain the 

optimal detection sensitivity. The experimental results show that 

the proposed information metrics can successfully detect low-rate 

DDoS attacks and clearly reduce the false positive rate.  

Furthermore, the proposed IP traceback algorithm can find all 

attacks as well as attackers from their own local area networks 

(LANs) and discard attack traffic. 

Keywords— Attack detection, information metrics, IP 

traceback, low-rate distributed denial of service (DDoS) 
attack. 

I. INTRODUCTION 

THE distributed denial of service (DDoS) attack is a 

serious threat to the security of cyberspace. It typically 
exhausts bandwidth, processing capacity, or memory of a 
targeted machine or network. A DDoS attack is a 
distributed, cooperative and large-scale attack. It has 
been widely spread on wired or wireless networks.  
 
A. Motivation 
 DDoS attack detection metrics are mainly separated into 
two categories: the signature-based metric and anomaly-
based metric. The signature-based metric depends on 
technology that deploys a predefined set of attack 
signatures such as patterns or strings as signatures to 
match incoming packets 
It is difficult to set the proper thresholds which help  to 
balance the false positive rate and the false negative rate. 
Third, it is very difficult to extract the features of normal 
and anomalous network behaviors precisely. An anomaly-
based detection metric uses a predefined specific 
threshold, such as an abnormal deviation of some 
statistical characteristics from normal network traffic, to 
identify abnormal traffic amongst all normal traffic. 
Therefore, the utilization and choice amongst all normal 
traffic. 

Therefore, many information-theory-based 
metrics have been proposed to overcome the above 
limitations. In information theory, information entropy is a 
measure of the uncertainty associated with a random 
variable. Information distance (or divergence) is a 
measure of the difference between different probability 
distributions. Shannon’s entropy and Kullback– Leibler’s 
divergence methods have both been regarded as 
effective methods for detecting abnormal traffic based on 
IP address-distribution statistics or packet size-distribution 
statistics. 

 
B. Contributions 
The main contributions of this paper are as follows. 
1) It analyzes and highlights the advantages of 
generalized entropy and information distance compared 
with Shannon entropy and Kullback–Leibler distance, 
respectively. 
2) It proposes the generalized entropy and information 
distance metrics outperform the traditional Shannon 
entropy and Kullback–Leibler distance metrics for the low-
rate DDoS attack detection in terms of early detection, 
lower false positive rates, and stabilities. 
3) It proposes an effective IP traceback scheme based on 
an information distance metric that can trace all attacks 
back to their own local area networks (LANs) in a short 
time. 
 
II. DETECTION ALGORITHMS AND IP TRACEBACK ANALYSIS 

In this section, we propose and analyze two effective 
detection algorithms and an IP traceback scheme. In this 
paper, we make the following reasonable assumptions: 
1) We have full control of all the routers; 
2) We have extracted an effective feature of network 
traffic (e.g., the unforged source IP addresses) to sample 
its probability distribution; 
3) We have obtained and stored the average traffic of the 
normal, as well as the local thresholds σfi  and σfi (Ri) on 
their own routers in advance; 
4) On all routers, the attack traffic obeys Poisson 
distribution and the normal traffic obeys Gaussian noise 
distribution. 
 
A. Generalized Entropy Metric 
In information theory, the information entropy is a 
measure of the uncertainty associated with a random 
variable, forming the basis for distance and divergence 
measurements between probability densities. The more 
random the information variable, the bigger the entropy. 
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In contrast, the greater certainty of the information 
variable, the smaller the entropy. The generalized 
information entropy as a generalization of Shannon 
entropy is one of a family of functions for quantifying 
either the diversity uncertainty or randomness of a 
system. It is a very important metric in statistics as an 
index of diversity. The generalized information entropy of 
order α is defined as  
 

 
      
Where Pi are the probabilities of  { x1 , x2 …….xn} , 
 Pi ≥ 0 
 

  
When α =0 or the probabilities of { x1 , x2 …….xn} are all 
the same, we have the maximum entropy as follows 
    

                     
which indicates the probability density of information is 
maximum decentralization. 

 
Equation is as follows 

            
When , we can obtain the minimum information 
entropy  
. When , this indicates the probability 
density of information is at the maximum concentration. 

, where   is the largest probability 
Among Pi. 
In the case α>0, we have (d/dα) Hα (x)≤0; therefore, the 
generalized information entropy is a non increasing 
function of α. 
Namely: Hα1(x) ≥ Hα2 (x) for α1 <α2. 
Karol discussed the relations between Shannon entropy 
and generalized entropies of integer order α. The value of 
generalized entropy depends on the parameter. In 
particular, the more important performance for 
generalized entropy (α>1) is that it can increase the 

deviation between the different probability distributions 
compared to when Shannon entropy is used. 
To observe and analyze the formulas of Shannon and 
generalized information entropy, we know that the high 
probability event can contribute more to the final entropy 
in generalized information entropy than in Shannon 
entropy while α >1 . The low probability event can 
contribute more to the final entropy in generalized 
information entropy than in Shannon entropy while α<1. 
Therefore, we can obtain different final entropy values by 
adjusting the α value according to different requirements. 
In particular, when α=2, we have 
  

                          
Based on the above analysis, we consider the different 
characteristics of probability distribution between the 
human-participating legitimate network traffic and the 
automatic machine generated DDoS attack traffic and 
includes the property of generalized information entropy 
of order α. We design our anomaly based DDoS detection 
system based on the above analysis. In theory, the 
Shannon entropy value of fractional Gaussian noise 
distribution is higher than that of the Poisson distribution. 
The generalized information entropy value is lower than 
the Shannon entropy value and the higher probability 
event can have a greater influence on the final entropy in 
generalized information entropy compared to Shannon 
entropy while α>1 .  
 
B. Information Distance Metric 
We consider two discrete complete probability distribution  
P = ( p1, p2, ……….pn) and Q = (q1, q2,………..qn ) with 
  

 

 
1 ≥ pi ≥ 0,  1 ≥ qi ≥ 0,  i = { 1,2,3 ….n}. 
The information divergence is a measure of the 
divergence between P and Q and is shown below 
 

 
In fact

, this is information divergence of order α and it is always 
nonnegative if α ≥ 0. Dα ( P‖ Q) =0 must be the minimum 
of the distance if, and only if P =Q. The exceptional case 
is that if P and Q are incomplete probability distributions 
or α < 0, then Dα ( P‖ Q) may be negative. 
As α is an arbitrary positive parameter, we can assume 
the following special and useful formulas according to the 
different α value: 

 

 
Which is the Kullback –Leibler divergence. 
Similarly, we can test and validate the inequality as 
follows: 

                   D1( P‖Q) =D2 (Q‖P) 
While is the Poisson probability distribution and is the 
fractional Gaussian noise probability distribution. 
We discuss three important properties of the information 
divergence: additive, asymmetric, and increasing function 
of . To begin with, we prove the additive property. 
Assertion 1: Let P1 and Q1 be two different probability 
distributions on the same set and let P2and Q2 be two 
different probability distributions on another set. This 
means P1 and P2 are two statistically independent 
distributions of each other. The same is true for Q1 and Q2  
 
Proof: 
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In general , if P = P1  X P2 X …..X Pn 

                        Q = Q1 X Q2 X ……X Qn 

 
Dα(P‖Q) =Dα(P1‖Q1) +Dα(P2‖Q2) +………+Dα(Pn‖Qn). 
 
Particularly, when P = P1 X P2, Q = Q1 XQ2, P1 = P11 X P12 
                   P2 = P21 X P22, Q1 = Q11 X Q12, Q2 =Q21 XQ22 

We have 

 Dα(P‖Q) = Dα(P1‖Q1) +Dα(P2‖Q2) 

    = Dα(P11‖Q11) + Dα(P12‖Q12) 
       + Dα(P21‖Q21) +Dα(P22‖Q22) 
 
This additive property is very useful because it implies 
that aggregated traffic can be seen as the sum of 
individual traffic and, therefore, it is the theoretical basis 
of the collaborative detection or multipoint detection [15], 
[18]. We will design a collaborative DDoS detection 
algorithm later (shown as Listing 1) based on this 
property. Second, we discuss the asymmetric property of 
divergence. 
 
 
 
Assertion 2: Let and be two different probability 
distributions on the same set, then Dα(P||Q) is a directed 
divergence, and in general, while   
This fact means Dα (P||Q) is not a metric. 
 

 
The asymmetric property is an important property of 
information divergence as the direction of divergence 
used in detecting DDoS attacks can influence the 
effectiveness of the method. 
Namely, in general, 
 

 
When P is the Poisson probability distribution, and Q is 
the fractional Gaussian noise probability distribution, we 
can test and validate the inequality 
 

Dα (P||Q) < Dα (Q||P) 
 
 
 
 
 
 
 

To use information divergence as a metric, we need to 
overcome the asymmetric property. Here we propose the 
information distance as defined as follows. 
 
 
 
 
Definition: We name Dα (P, Q) defined as follows as the 
information distance: 
  Dα( P,Q) = Dα ( P||Q) + Dα(Q||P) 

     

 

 

 

  
 
We have the following:     
    
1) Identity property: 
    Dα (P, Q)  =0 , D1(P,Q) = 0; while P = Q. 
 
2) Symmetry property: 
     Dα(P, Q) = Dα (Q,P), D1(P,Q) = D1(Q,P) . 
 
3) Triangle inequality: 
     Dα (P,Q) ≤ Dα (P, L) + Dα ( L, Q) 
     D1 (P,Q) ≤  D1(P,L) + D1 (L, Q) . 
Therefore, both Dα (P,Q) and D1( P,Q) are metrics and 
can be used as distance measures in DDoS attack 
detection . 
Finally, we discuss the third property of information 
divergence. 
Assertion 3: Both Dα (P||Q) and Dα(Q||P) are the 
increasing functions in α while α >1. 
This is because they are both the convex functions in α 
while α >1. Obviously the information distance also has 
additive and increasing properties. 
 
According to the above discussion, we design the 
collaborative detection algorithm as shown in Listing 1 to 
detect a DDoS attack and discard its packets. 
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Listing 1. A collaborative DDoS attack detection 
algorithm 
1. Set the sampling frequency as , the sampling period 
as    T, and the collaborative detection threshold as σ. 
 
2. In routers R1 and R2 of Fig. 1, sampling the network 
traffic comes from the upstream routers R3, R4,R5,R6 
and LAN , LAN in parallel. 
 
3. Calculate in parallel the numbers of packet which 
have 
various recognizable characteristics (e.g., the source 
IP address or the packet’s size, etc.) in each sampling 
time interval τ ( τ = 1/f) within T. 
 
4. Calculate the probability distributions of the network 
traffic come from R3, R4, LAN1 and R5, R6, LAN2 in 
parallel. 
 
5. Calculate their distances on router  R1 and R2, 
respectively, using the formula 
Dα (P,Q) = Dα (P||Q) + Dα (Q||P). 
 
6. Sum the distances. 
 
7. If the summed distance is more than the collaborative 
detection threshold , then the system detects the 
DDoS attack, and begins to raise an alarm and discards 
the attack packets; otherwise the routers forward the 
packets to the downstream routers. 
 
8. Return to step 2. 
 

To illustrate this algorithm, we use the network topology 
of  Fig. 1 as an example. Our algorithm can not only 
detect DDoS attacks at router via a single-point detection, 
but also can detect attacks using a collaborative detection 
at routers R1, R2 , or 
 

 
 
 
 
 
 
 

at R3, R4, R5 and R6. The processing flowchart of the 
collaborative detection algorithm is shown as Fig. 
 
Compared with single-point detection, we can detect 
attacks earlier by using the collaborative detection 
approach because traffic can be analyzed in upper 
stream routers instead of just in the victim’s router. 
In information theory, we know that both information 
divergence and information distance are nonnegative 
values and the sum of the divergences or distances is 
always greater than themselves. In the meantime, both 
the divergence and distance are increasing with order α . 
While α >1. We can increase the divergence or distance 
between legitimate traffic and attack traffic to distinguish 
DDoS attacks easily and earlier by increasing the value of 
order and summing the divergences or distances in 
collaborative detection. Therefore, in DDoS attack 
detection, we can take full advantage of the additive and 
increasing properties in α of the information divergence 
and the information distance to enlarge the distance or 
gap between legitimate traffic and attack traffic. This 
means we can find and raise alarms for DDoS attacks 
early and accurately with a lower false positive rate. 
 
C. IP Traceback Analysis 
IP traceback [20] is the ability to find the source of an IP 
packet without relying on the source IP field in the packet, 
which is often spoofed. We combine our DDoS attacks 
detection metric with IP traceback algorithm and filtering 
technology together to form an effective collaborative 
defense mechanism against network security threats in 
Internet. In hop-by-hop IP tracing, the more hops the 
more tracing processes, thus the longer time will be 
taken. In order to convenience for IP traceback algorithm 
analysis, we classify two types of traffic in Figs. 1 and 3 
as local traffic and forward traffic, respectively. The local 
traffic of is the traffic generated from its LAN , the forward 
traffic of is the sum of its local traffic and the traffic  
forwarded from its immediate upstream routers.In this 
paper, we propose an IP tracback algorithm that can trace 
the source (zombies) of the attack up to its local 
administrative network; Listing 2 illustrates this algorithm. 
 
 
 
 
 

Journal of Computing Technologies (2278 – 3814) / #  4 / Volume 3 Issue 11

   © 2014 JCT. All Rights Reserved                                                                                                4



 
 
We discuss the proposed IP traceback algorithm based 
on a sample scenario of low-rate DDoS attacks on a 
victim as shown in Figs. 1 and 3. When the proposed 
attacks detection system detects an attack on a victim, 
the proposed IP traceback algorithm will be launched 
immediately.  
On router R0 , the proposed traceback algorithm 
calculates information distances based on variations of its 
local traffic and the forward traffic from its immediate 
upstream routers; in this paper, we set LAN0 of router R0 

include the victim. If the information distance based on its 
local traffic is more than the specific detection threshold 
σ10, the  proposed detection system detects an attack in 
its LAN0 ; this means that the detected attack is an 
internal attack. If the information distances based on the 
forward traffic from its immediate upstream routersR1 and 
 R2are both more than the specific detection threshold 
σf(R1) and σf(R2) , respectively, the proposed detection 
system has detected attacks in routers R1 and R2, then on 
R1 and R2 the proposed traceback algorithm calculates 
information distances based on variations of their local 
traffic and the forward traffic from their immediate 
upstream routers, and will find that there are no attacks 
in LAN1 and LAN2 and R4 ; therefore, on routers R3,R5 
and R6 the proposed algorithm calculates continually 
information distances based on variations of their local 
traffic and the forward traffic from their immediate 
upstream routers, then can find there is an attack 
(zombie) in LAN so the router R5 will stop forwarding the 
traffic from the zombie immediately. 
 

 
 

 

 
Finally, the proposed algorithm can find attacks (zombies) 
in LAN and LAN , respectively. Therefore, based on the 
IP traceback algorithm, it is easy to trace back and figure 
out all attack routes f1,f2, and f3 as shown in Fig. 1. From 
Listings 1 and 2, we know that the proposed traceback 
algorithm has lower computational cost (or time  
complexity) than the binary tree traversal algorithm in a 
binary attack tree, and has higher accuracy of traceback 
process as the proposed information distance metric has 
a lower false positive rate in attacks detection.For the 
evaluation of the total traceback time, we consider the 
worst situation that the binary attack tree is a full ranches 
tree and all zombies are distributed at the far ends evenly; 
the evaluation result is shown in Fig. 4. From Fig. 4, we 
know that there will be a short traceback time within 5 
hops from the victim to the far end zombies, but with more 
than 6 hops the 
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Fig. 4. Total traceback time with the variation of hops in a binary attack 
tree (full branches);  T indicates one sampling period. 
 

total traceback time will be increasing quickly. This is just 
the worst case; actually the distribution of zombies is 
uneven and not all of them are located in the far ends of 
the attack tree, thus the total traceback time will be 
decreasing sharply. Furthermore, further measures can 
be taken to reduce the total traceback time in the 
proposed traceback algorithm; for example, we can 
improve the traceback algorithm using the parallel 
processing method to trace back all zombies, also we can 
obtain and store 
the attack traffics of one sampling period on their own 
routers in advance while the proposed detection metric 
detects an attack on the victim. 
 
III. EXPERIMENT RESULTS 

The proposed detection systems can use either the 
source IP address-based method or the IP packet size-
based method to calculate the probability distribution of 
the traffic in the given time interval. The IP packet size-
based method is to utilize the feature that attacks usually 
produce packets in defiance of a victim’s response and 
when a flooding-based attack occurs, the same sized 
packets are generally used. On the other hand, the 
legitimate network traffics have typical packet sizes with 
respect to requests and responses or data and 
acknowledgments [5]. Therefore, the more concentrated 
the size distribution of observed IP packets, the smaller 
the entropy value. Similarly, the more dispersed the 
size distribution of IP packets size, the bigger its entropy 
value. The source IP address-based method is utilized 
when attacks from zombies occur because they usually 
have a more concentrated source IP address than 
legitimate access. Therefore, we can obtain the different 
information entropy value through calculating the 
probability distribution of the packets’ source IP 
address. A bigger entropy value represents more 
randomness of the source IP addresses. Through 
detecting the change of the information entropy value, we 
can obtain the change of the source IP address 
distribution, and then decide whether the attack 
traffic is and then discard it. 
In the experiment, we use the MIT Lincoln Laboratory 
Scenario (attack-free) inside tcpdump dataset [21] as the 
normal network traffic, and use the Low-rate DDoS attack 
scenario 

 
 
Fig. 5. Normal network traffic (attack-free) scenario from MIT/LL; - x axis 
denotes tick interval (second), and – y axis denotes packets/tick (unit). 
 

 
 
Fig. 6. Low-rate DDoS attack scenario from CAIDA; - x axis denotes tick 
in interval  (second), and – y axis denotes packets/tick (unit). 
 

from CAIDA [22] as the DDoS attack traffic to test the 
proposed algorithms. The normal network traffic scenario 
is the whole day data collected on Thursday in the third 
training week; the data do not contain any attacks. In this 
experiment, we let the sampling period be 300 s, so in 
this attack-free scenario we collect at random the normal 
traffic from the 20 650th to 20 950

th
 as a sampling period. 

The partial traffic scenario is shown in Fig. 5. The attack 
scenario includes a DDoS attack run by an attacker and is 
performed over multiple networks. The attack dataset 
contains approximately 5 min (300 s) of anonymized 
traffic form a DDoS attack on August 4, 2007. The traces 
include only attack traffic to the victim and responses from 
the victim; nonattack traffic has been removed as much 
as possible. The partial attack scenario is shown in Fig. 6. 
Based on [23], more than 10 000 attack packets per 
second can achieve a high-rate attack; 1000 attack 
packets per second around can only achieve 60% of full 
attack. Therefore, this is a low-rate DDoS attack. The 
details of traffic feature are shown in Fig. 7. We classify 
statistic IP packets and compute the probability 
distributions of the source IP addresses in attack and 
attack-free scenarios, respectively, as shown in Figs. 8 
and 9.We consider  
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Fig. 7. Details of traffic feature of the low-rate DDoS attack scenario 
from CAIDA. 
 

 

 
 
Fig. 8. Probability distribution of source IP address in low-rate DDoS 
attack (only attack traffic) scenario. 
 

 
Fig. 9. Probability distribution of source IP address in normal network 
traffic  (attack-free) scenario. 
 

the real low-rate DDoS attack scenario in a real network 
environment,because the low-rate attack has not yet 
consumed the whole computing resources on the server 
or all of the bandwidth of the network connecting the 
server to the Internet. Therefore, a real low-rate DDoS 
attack scenario not only contains attack traffic but also 
contains attack-free traffic. In this experiment, we mix the 
low-rate DDoS attack traffic and the normal network traffic 
into a real low-rate DDoS attack scenario. Its probability 
distribution of source IP address is shown in Fig. 10. 
 
A. Generalized Entropy Metric 
As a comparison, we not only test the generalized 
entropies in varied value but also test the Shannon 
entropies using the real dataset for normal (attack-free) 
traffic and attack traffic. 

 
 
Fig. 10. Probability distribution of source IP address in a real low-rate 
DDoS attack (mixed traffic of attack and attack-free) scenario. 
 
TABLE I 
COMPARISON OF SHANNON ENTROPY AND GENERALIZED ENTROPY IN THE 

LOW-RATE DDoS ATTACK DETECTIONC  
 

 
 
Table I shows the Shannon and generalized entropies of 
normal traffic and attacks traffic along with their spacing, 
the spacing represents the distance of entropy value 
between normal traffic and attacks traffic. It demonstrates 
that the generalized entropy method outperforms the 
Shannon entropy method in low-rate DDoS attack 
detection as the spacing is more significant. It also shows 
that the spacing in generalized entropy method increases 
along with the order α gradually. This increase is almost 
linear. Therefore, we can adjust the order value according 
to different requirements. 
 
For the aim of evaluating the performance of generalized 
entropy metric globally, we test the proposed metric in the 
following situations, respectively: to increase DDoS attack 
intensity gradually and quickly, as well as to reduce DDoS 
attack intensity gradually then quickly to observe 
variations of the spacing. In this experiment, in the victim, 
we keep the normal traffic same, then increase the 
number of the pure low-rate DDoS attack traffic (as 
shown in Fig. 6) from 1 to 10 gradually and from 100 to 
1000 quickly, as well as reduce the number of attack 
traffic to one half gradually then from one half reduced to 
one tenth quickly. The experimental results are shown in 
Figs. 11, 12, and 13, respectively. 
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Fig. 11 indicates that the spacing of Shannon and 
generalized metrics are increasing along with the 
increasing of number of DDoS attack traffic. There are 
rapid increases of spacing at the 
 

 
 
Fig. 11. Variations of spacing of Shannon and generalizedmetrics in 
increasing DDoS attack intensity gradually 
 

 
 
Fig. 12. Variations of spacing of Shannon and generalized metrics in 
increasing DDoS attack intensity quickly. 
 

 
 
Fig. 13. Variations of spacing of Shannon and generalized metrics in 
reducing  DDoS attack intensity gradually and then quickly 
 

beginning period whatever the Shannon or generalized 
metric,  

because the attacks still are low-rate attacks during this 
period. However, the spacing of the generalized metric 
can achieve stable values after three times the number 
increased of attack traffic in the order of  α =10 or after 
four times the number increased of attack traffic in the 
order of α =2 ; the spacing of Shannon metric cannot 
achieve a stable value and is still increasing along with  
the increase of number of attack traffic. In order to 
evaluate the performance of the proposed metric in 
detecting high intensive (high-rate) DDoS attack, in the 
test we increase the number of attack traffic dramatically 
from 100 times up to 1000 times to observe variations of 
spacing. Fig. 12 shows that the spacing of the Shannon 
metric can achieve a stable value after 300 times the 
number increased of attack traffic. Therefore, the 
proposed generalized metric is a stable and better (larger 
spacing) metric for detecting low-rate DDoS attack, 
especially excellent for high-rate attacks in comparison 
with Shannon metric. 
 
A very low-rate attack traffic will be drown by normal 
network 
traffic totally and become extremely difficult to detect 
using anomaly-based traffic detection approaches. It is 
important 
to know how low-rate DDoS attack traffic can be detect 
by the proposed metric. In this experiment, we first reduce 
the 
number of low-rate attack traffic gradually and then 
quickly reduce 
the number. Fig. 13 shows the experimental result that 
the spacing of the Shannon and generalized metrics are 
reducing along with reducing the number of low-rate 
attack traffic; there is stable reduction when the number of 
attack traffic reduces gradually for the generalized metric, 
but reduces quickly for the Shannon metric. When the 
number of attack traffic reduces sharply the spacing of 
Shannon and generalized metrics will reduce dramatically 
too, but for the Shannon metric, the spacing will reduce 
and up to zero (here, the number of attack traffic is just 
reduced to one third) extremely quickly, because at this 
situation the attack traffic becomes a very low-rate attack. 
Therefore, the proposed metric can detect a very low-rate 
DDoS attack well in comparison with the Shannon metric. 
For example, in this experiment, the proposed metric can 
still detect a very low-rate attack which is reduced to one 
tenth the number of the original low-rate attack traffic 
while the order .α =10. 
 
Now we discuss how early the proposed metric can 
detect a low-rate DDoS attack in comparison with the 
Shannon metric.To simplify the discussion, we assume a 
scenario of an attack based on a binary tree network 
topology, and the number of attack traffic in a local router 
is formed by the numbers of traffic from its two upstream 
routers (they are called brother), and let the numbers of 
traffic from every brother router be the same.Therefore, 
we have: the number of attack traffic in  Hop0 (1) = two 
times number of attack traffic in Hop1 (1/2) = four times 
number of attack traffic in Hop2 (1/4) =eight times number 
of attack traffic in Hop3 (1/8) = ……… 
then based on this rule we test the proposed metric and 
the experimental result is shown in Table II. From this 
table we can see that the proposed metric can detect a 
low-rate DDoS attack two hops earlier than the Shannon 
metric while the order α =2. and three hops earlier 
approximately while α =10. According to [24], generally on 
the Internet, the normal route 
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hops between two network ends is 15; therefore, the 
proposed metric should be a better metric in detecting 
attacks for several hops earlier, such as three hops earlier 
while the order α =10. 
 

 
 

 
 
We further compute and compare the false positive rate 
of the proposed approach with the Shannon metric. There 
will be different false positive rate values in different 
situations due to the real network being extremely 
dynamic and complex. Therefore, it is very difficult to 
obtain a definite value of the false positive rate by using a 
certain metric. For the purpose of the discussion in this 
paper, we assume that the false positive rate is known by 
using the Shannon metric in the real network situation. 
The false positive rate β is defined as the proportion of 
negative events (not attacks) that were mistakenly 
reported as being positive events (attacks) in the total of 
tested events. We choose the mid-value of the spacing as 
the threshold, and obtain a reduced false positive rate 
when using the proposed metric compared to the 
Shannonmetric. The reduced false positive rate β’ is 
defined as  
 

 
This measurement represents how better the generalized 
metric outperforms the traditional Shannon metric. Table 
III shows that the proposed metric clearly reduces the 
false positive rate, from 161.71% to 199.19%, which is 
more than 1.6 times of the baseline false positive rate. 
In summary, compared with the Shannon metric, the 
proposed generalized entropy metric is a stable and low 
false positive rate metric in low-rate DDoS attacks 
detection, it can not only effectively detect low-rate 
attacks but also detect attacks several hops early. 
 
B. Information Distance Metric 

In this experiment, we use the real normal network traffic 
and low-rate attack datasets shown above as the 
incoming traffic to 

 
 
Fig. 14. Variations of information distance and divergence as well as 
divergence by inappropriate measure along with the value of the order 
α (α >1) the Kullback–Leibler distance and divergence as well as the 
divergence by inappropriate measure while  α=1. 
 

test the effectiveness of the proposed metric in detecting 
a lowrate DDoS attack, and further to study the following 
properties. 
1) When detecting low-rate DDoS attacks, our approach 
is much better than the Kullback–Leibler divergence 
approach because we are able to enlarge the distance 
rate and reduce the false positive rate. 
2) Ourmetric definition is necessary because if the 
divergence is used inappropriately, the outcome will be 
unsatisfactory as the distance (gap) will be very small, 
and the false positive rate will be increased. 
3) Our approach is able to achieve early detection of low-
rate DDoS attacks. 
4) By adjusting the value of , we can adjust the resulting 
distance in our approach. In order to test variations of 
distance and divergence of the Kullback–Leibler metric 
and information metric along with the order α , the normal 
network traffic and the low-rate attack traffic must have 
the same number of source IP addresses in a sampling 
period. Therefore, we sample the above low-rate DDoS 
attack traffic again to form a new low-rate attack which 
will have the same number of source IP addresses with 
the normal traffic, and have the same probability 
distribution of source IP addresses with the original attack 
traffic. The experimental result is shown in Fig. 14, which 
indicates that the information distance and divergence 
as well as the divergence by inappropriate measure all 
are increasing along with the increase of order , but the 
information distance increases quickly, the divergence by 
inappropriate measure increases a little and keeps a 
stable value after the order α =3. The information distance 
has a bigger gap than the Kullback–Leibler distance and 
divergence. Therefore, the proposed metric outperforms 
the Kullback–Leibler metric in a low-rate DDoS attack 
detection. It is important that we can adjust the resulting 
(detecting) distance as a requirement by adjusting 
the value of  α to achieve better detection. We first 
discuss the detection effectiveness of the proposed 
information distance metric under a very low-rate DDoS 
attack condition, then discuss how many hops early with 
the proposed metric in comparison with the Kullback–
Leibler metric 
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in a low-rate attack. We assume the low-rate attack 
scenario and the network topology are the same as above 
(used in generalized metric test). The experimental 
results are shown in Tables IV and V. From Tables IV and 
V, we know that the value of distance is decreasing 
gradually along with an increase of hop count, namely the 
lower the rate of attack traffic, the smaller the distance. 
The proposed metric can detect a very low-rate attack 
better than using the Kullback–Leibler metric; for  
example, the distance still has a big gap (2.1832, while 
the order α=10 ; the larger distance will give a better 
accuracy in an attack detection) when the attack traffic is 
reduced to 1/64 of itself, but for the Kullback–Leibler 
distance it becomes a little gap (0.3832). Furthermore 
the experimental results also show that the proposed 
metric can detect a low-rate DDoS attack early in 
comparison with the Kullback–Leibler distance metric, 
such as there should be three hops early while the order , 
four hops early while the order α =2 , and while the order 
α =3 it can have six hops early. Therefore, the information 
distance metric is a good metric for detecting low-rate 
DDoS attacks; it can not only detect very low-rate attacks 
but also have successful detection several hops earlier 
than the Kullback–Leibler distance metric.In order to 
evaluate the performance of the proposed information 
distance metric in detecting high intensive (high-rate) 
DDoS attack, we increase the number of attack traffic 
dramatically from 100 times up to 1000 times to observe 
the variations of distance. Fig. 15 indicates that the 
distances of the proposed metric are increasing gradually 
along with the increase of 

 
 
Fig. 15. Variations of distance of the information andKullback–
Leiblermetrics in increasing DDoS attack intensity quickly. 
 

 
the number of attacks traffic. There are rapid increases of 
distance at the beginning period, because the attack after 
aggregation is still a low-rate attack during this period. 
Then there should be the stable increase by the rapid 
increase of attack intensity. Therefore, the proposed 
metric is a stable and better (larger gap) metric for 
detecting low-rate DDoS attack, and is perfect for high-
rate attacks detection in comparison with the Kullback–
Leibler metric. We compute the false positive rate of the 
proposed information distance metric under the same 
conditions as the above (used for generalized entropy 
metric). Similarly, the reduced false positive rate β’’ is 
defined as 
 

 
The result is shown in Table VI, which indicates the 
reduced false positive rate by the proposed metric in 
different values of order in comparison to the Kullback–
Leibler distance metric. It can clearly reduce the false 
positive rate up to 146.19% of the Kullback–Leibler metric 
while the order α=10 for the proposed information 
distance metric. For all situations, it has been shown that 
the proposed information distance metric is a better 
metric because first, it can be used in real measurements 
in comparison with the information 
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divergence approach which is not a real metric (it is 
asymmetric and the distance gap between the normal 
network traffic and the attack traffic will be smaller if we 
used the inappropriate divergence measurement, which 
may result in decreasing the detection sensitivity during a 
low-rate DDoS attack); second, it is a stable metric which 
holds a low false positive rate (it can not only effectively 
detect low-rate attacks but also detect the attacks several 
hops earlier in comparison with the Kullback– 
Leibler distancemetric). Confidence intervals will be 
beneficial for estimating the possible attacks based on the 
outputs of the system parameters, especially for 
predicting future attacks. Confidence intervals are a good 
indication for the reliability the prediction system. Due to 
the paper length limit, obtaining the confidence intervals 
of the system will be our future work 
 
IV. RELATED WORK 

The metrics of anomaly-based detection have been the 
focus of intense study for years in an attempt to detect 
intrusions and attacks on the Internet. Recently, 
information theory as one of the statistical metrics is being 
increasingly used for anomaly detection. Feinstein et al. 
[25] present methods to identify DDoS attacks by 
computing entropy and frequency-sorted distributions of 
selected packet attributes. The DDoS attacks show 
anomalies in the characteristics of the selected packet 
attributes, and the detection accuracy and performance 
are analyzed using live traffic traces from a variety of 
network environments. However, because the proposed 
detector and responder lack coordination with each other, 
the possible impact of responses on legitimate traffic and 
expenses for computational analysis are increased. Yu 
and Zhou [26] applied an information theory parameter 
(entropy rate) to discriminate the DDoS attack from the 
surge legitimate accessing. This is based on shared 
regularities with different DDoS attack traffic which are 
different from real surging accessing in a short period of 
time. However, attackers can adopt a multiple attack 
package generation function in one attack to easily fool 
the proposed detection algorithm. Lee and Xiang [27] 
used several information-theoretic measures, such as 
entropy, conditional entropy, relative conditional entropy, 
information gain, and information cost for anomaly 
detection. To some extent these measures can be used 
to evaluate the quality of anomaly detection methods and 
build the appropriate anomaly detection models even 
though it is very difficult to build an adaptive model that 
can dynamically adjust to different sequence lengths 
(or time windows) based on run-time information. 
Alow-rateDDoS attack is substantially different from the 
traditional (high-rate) DDoS attack. A few researchers 
have proposed several detection schemes against this 
type of attack. Sun et al. [28] proposed a distributed 
detection mechanism that used a dynamic time warping 
method to identify the existence of the low-rate attacks, 
and then a fair resource allocation mechanism will be 
used to minimize the number of affected flows. However, 
this method can lose the legitimate traffic to some extent. 
Shevtekar et al. [3] presented a light-weight data structure 
to store the necessary flow history at edge routers to 
detect the low-rate TCP DoS attacks. Although this 
method can detect any periodic pattern in the flows, it 
may not be scalable and can be deceived by the IP 
address spoofing. Chen et al. [18] present a collaborative 
detection of DDoS attacks. While focusing on. detection 
rate, it is difficult for this scheme to differentiate the 

normal flash crowds and real attacks. As it heavily relies 
on the normal operation of participating routers, the false 
positives will increase if the routers are compromised. 
Zhang et al. [29] propose to use self-similarity to detect 
low-rate DDoS attacks. While the approach is claimed to 
be effective, the paper does not use real scenario data to 
evaluate it.Kullback–Leibler divergence, as a well-known 
information divergence, has been used by researchers to 
detect abnormal traffic such as DDoS attacks [10], [11], 
[30]. The difference between previous work and our 
research is that we are the first to propose using 
information divergence for DDoS attack detection. 
Information divergence, as the generalized divergence, 
can deduce many concrete divergence forms according to 
different values of order α. For example, when α→1 
it can decipher the Kullback–Leibler divergence. It is very 
important and significant that we can obtain the optimal 
value of divergence between the attack traffic and the 
legitimate traffic in a DDoS detection system by adjusting 
the value of order of information divergence. In addition to 
this, we also study the properties of Kullback–Leibler 
divergence and information divergence in theory and 
overcome their asymmetric property when used in 
real measurement. We successfully convert the 
information divergence into an effectivemetric in DDoS 
attack (including both low-rate and high-rate) detection. 
 
V. CONCLUSION 

In this paper, we propose two new and effective 
information metrics for low-rate DDoS attacks detection: 
generalized entropy and information distance metric. The 
experimental results show that these metrics work 
effectively and stably. They outperform the traditional 
Shannon entropy and Kullback–Leibler distance 
approaches, respectively, in detecting anomaly traffic. 
In particular, thesemetrics can improve (or match the 
various requirements of) the systems’ detection sensitivity 
by effectively adjusting the value of order α of the 
generalized entropy and information distance metrics. As 
the proposed metrics can increase the information 
distance (gap) between attack traffic and legitimate traffic, 
they can effectively detect low-rate DDoS attacks early 
and reduce the false positive rate clearly. The proposed 
information distance metric overcomes the properties of 
asymmetric of both Kullback–Leibler and information 
divergences. Furthermore, the proposed IP traceback 
scheme based on information metrics can effectively 
trace all attacks until their own LANs (zombies). In 
conclusion, our proposed information metrics can 
substantially improve the performance of low-rate DDoS 
attacks detection and IP traceback over the traditional 
approaches. 
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