

A New Privacy Preserving Access

Control Policy for Event

Processing System
P REVATHI PRASANNA

#1
, CH SRINIVAS REDDY

*2
, P SRINIVAS

*3

M.Tech Scholar
#1

, Associate Professor
*2

, Associate Professor
 *3

Department of Information Technology,

Vignan Institute of Information Technology,

Visakhapatnam (INDIA).

Abstract

Event processing is a method of tracking

and analyzing (processing) streams of information

(data) about things that happen (events) and deriving

a conclusion from them. Complex event processing,

or CEP, is event processing that combines data from

multiple sources to infer events or patterns that

suggest more complicated circumstances. Today

event processing systems lack methods to preserve

privacy constraints of incoming event streams in a

chain of subsequently applied stream operations.

This problem is mainly observed in large-scale

distributed applications like a logistic chain where

there were a lot of individual domains available for

processing the event. An intruder can always infer

from legally received outgoing event streams

confidential input streams of the event processing

system. This paper mainly concentrates a very new

fine-grained access management for processing

complex event processing tasks. Here each and

every operation is performed by individual roles

with their access policies specified. This paper is

mainly used for specifying the access policy and

also enforcement of those access policy

specifications in a proper way. By conducting

various experiments on our proposed access policy

system, we finally came to a conclusion that this

access control policy clearly suits for almost all

types of logistics for performing their operations

without any misuse in transaction. By conducting

various experiments on real time courier/shipping

company web sites, we finally came to an

conclusion that the current application suits best for

avoiding fake during courier deliveries.

Keywords

Event Processing System, Security,

Access control System, Fine Grained Access

Control Policy, Shipping Company

1. Introduction

Event processing is a method of tracking

and analyzing (processing) streams of information

(data) about things that happen (events) and deriving

a conclusion from them. Complex event processing,

or CEP, is event processing that combines data from

multiple sources to infer events or patterns that

suggest more complicated circumstances. Today

event processing systems lack methods to preserve

privacy constraints of incoming event streams in a

chain of subsequently applied stream operations. In

large scale organization or business processes, it is

essential to detect inconsistencies or failures early.

For example, in large scale manufacturing and

logistic chain processes, transaction of items are

tracked continuously to detect loss or to re-route

them during transport. To answer this need complex

Journal of Computing Technologies (2278 – 3814) / # 145 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 145

event processing (CEP) systems have evolved as a

key paradigm for business and industrial

applications [1], [2]. CEP systems allow to detect

situations by performing operations on event

streams which emerge from sensors all over the

world, e.g. from packet tracking devices.

While traditionally event processing

systems have applied powerful operators in a central

way, the emerging increase of event sources and

event consumers have raised the need to reduce the

communication load by distributed in-network

processing of stream operations [3], [4], [5], [6]. In

addition, the collaborative nature of today’s

economy results in large-scale networks, where

different users, companies, or groups exchange

events. As a result, event processing networks are

heterogeneous in terms of processing capabilities

and technologies, consist of differing participants,

and are spread across multiple security domains [7],

[8]. However, the increasing interoperability of CEP

applications raises the question of security [2]. It is

not feasible for a central instance to manage access

control for the whole network. Instead, every

producer of information should be able to control

how its produced data can be accessed. For example,

a company may restrict certain information to a

subset of authorized users (i.e. that are registered in

its domain). Current work in providing security for

event-based systems covers already confidentiality

of individual event streams and the authorization of

network participants [9],[10], [11]. In CEP systems,

however, the provider of an event looses control on

the distribution of dependent event streams. This

constitutes a major security problem, allowing an

adversary to infer information on confidential

ingoing event streams of the CEP system.

 Figure 1. Access Control & Event Dependency

For Example consider the following

logistic shipping process illustrated in Figure 1

where a manufacturer is a role who mainly inserts

the products in his warehouse and he wants to

deliver an item to a customer. The shipping

company is mainly used for determining a

warehouse which is very close to the customer who

ordered the product, where the item will be shipped

to that warehouse before it will be delivered to the

customer. The entire logistic process is supported by

an event processing system, where operators are

hosted in the domain of each party and exchange

events including potentially confidential information

(e.g. the item’s destination is transmitted to the

shipping company). If now a third party receives

events related to the warehouse, it may draw

conclusions about the original event data (i.e.

destination address), in spite of the manufacturer

declaring this information as highly confidential and

only providing the shipping company with access

rights to it.

The main goal of this present event

processing system is to establish access control that

ensures the privacy of information even over

multiple processing steps in a multi-domain, large

scale CEP system. In particular, our contributions

for this paper are i) an access policy inheritance

mechanism to enforce access policies over a chain of

dependent operators and ii) a scalable method to

measure the obfuscation imposed by operators on

information exchanged in event streams. This allows

to define as part of the access policy an obfuscation

threshold to indicate when the event processing

systems can ignore access restrictions, thus

increasing the number of events to which application

components can react to and this way increasing also

the utility of the CEP system.

2. Literature Survey

 In this section we will describe the assumptions

that are used in the proposed paper. This section

mainly surveys on the literature of our proposed new

privacy preserving access control policy for event

processing systems. Here we mainly discuss about

the logistics what we are using for event processing

system.

Journal of Computing Technologies (2278 – 3814) / # 146 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 146

2.1 Logistics

Logistics is the management of the flow

of goods between the point of origin and the point of

consumption in order to meet some requirements, of

customers or corporations. The resources managed

in logistics can include physical items, such as food,

materials, animals, equipment and liquids, as well as

abstract items, such as time, information, particles,

and energy. The logistics of physical items usually

involves the integration of information flow,

material handling, production, packaging, inventory,

transportation, warehousing, and often security. The

complexity of logistics can be modeled, analyzed,

visualized, and optimized by dedicated simulation

software. The minimization of the use of resources

is a common motivation in logistics for import and

export which is clearly shown in figure 2.

Figure 2. Represents a Logistic Warehouse

2.2 Main Motivation

We assume a distributed correlation

network, where dedicated hosts are interconnected.

On these hosts we deploy operators, which are

executed to collaboratively detect situations and

form the distributed CEP system. The cooperative

behavior of the operators is modeled by a directed

operator graph G = (Ω, S) which consists of

operators ω ∈ Ω and event streams (ωi, ωj) ∈ S ⊆

(Ω × Ω) directed from ωi to ωj . Thus, we call ωi

the event producer and ωj the consumer of these

events. Each event contains one or more event

attributes which have discrete values. Every operator

ω implements a correlation function fω : Iω → Oω

that maps incoming event streams Iω to outgoing

event streams Oω. In particular, fω identifies which

events of its incoming streams are selected, how

event patterns are identified (correlated) between

events, and finally how events for its outgoing

streams are produced.

Figure 3. Represents the attributes in Shipping

Scenario

Figure 3 illustrates clearly an operator

graph of three operators according to the introduced

logistics example, each operator hosted in a distinct

domain. The correlation function fsc is applied to

events received from and produced by ωm on

produced items in the manufacturing domain. Events

produced by fsc carry two event attributes, the

warehouse location and estimated day of delivery

for shipped items.

3. Goals of Our Proposed

Access Control Model

The following are the goals of our

proposed access control policy which was used in

large scale logistics for doing a chain of online

transactions.

3.1 Access Control for CEP

Journal of Computing Technologies (2278 – 3814) / # 147 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 147

http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Materials_management
http://en.wikipedia.org/wiki/Production_%28economics%29
http://en.wikipedia.org/wiki/Packaging
http://en.wikipedia.org/wiki/Inventory
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Warehousing
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Simulation_software
http://en.wikipedia.org/wiki/Simulation_software

Our approach allows inheriting access

requirements by assigning them to event attributes in

form of an access policy. This allows to preserve

requirements through any chain of dependent

correlation steps of operators in G. In addition, an

obfuscation policy allows to specify an obfuscation

threshold for event attributes. In each correlation

step, the obfuscation of event attributes in produced

events is determined by the proposed access policy

consolidation protocol. Once the obfuscation

threshold is reached for an event attribute, the

attribute’s access requirements can be ignored. In

the following, we detail the concepts behind access

policies and obfuscation policies, and formalize the

security goal.

3.2 Access Policies

Access control allows specifying access

rights of subjects (operators) for the set of available

objects (event attributes). These access rights are

provided by the owner of an object (e.g. the

producer of an event stream) and may be granted to

operators based on an access requirement. Such a

requirement may be a role, a location or a domain

affiliation. Requirements are usually not direct

properties of the operators, but of the hosts where

the operators are deployed. Formally, we specify the

access rights within an access policy AP for an

operator ω as a set of (attribute, access requirement)

pairs:

APω = {(att1, ar1), ..., (attn, arn)} .

If there is no requirement specified for an

attribute, any consumer in the network will be able

to access it. Note that we consider attributes to be

distinct even if they use the same name, but are

produced at two distinct operators. An access

requirement is a tuple of a property p, a

mathematical operator op and a value set val: ar =

(p, op, val),

Where op ∈ {=,<,>,≤,≥, ∈}. val can be

specified by a range or a set of values. For the sake

of simplicity, in this paper access requirements are

only referring to domain affiliation and have a

structure like this:

ar1 = (domain, ∈, {domainA, domainB}).

In our example scenario, the

manufacturer’s event attributes have different access

requirements. While the information about the

item’s destination is accessible by the customer,

information about where the item is produced and

when it can be picked up is restricted to the shipping

company.

Therefore, the attached AP is defined as follows:

APmanufacturer =

{(destination,(domain,∈,{shippingComp,customer

})),

(pickup time, (domain,=,shippingComp)),

(production place, (domain,=,shippingComp))}

With the enforcement and assurance of

access policies at each producer, a consumer will be

eligible to access (receive) an attribute only if the

consumer’s properties match the access

requirements defined for the particular attribute. In

this case the consumer is trusted to use the attribute

in its correlation function and adopt the

requirements specified for the attribute in its own

access policy for all produced events.

Figure 4. Represents the Architecture flow of our

proposed access control policy in Shipping Scenario

Journal of Computing Technologies (2278 – 3814) / # 148 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 148

4. Methodology of Proposed

Paper

In this section we will discuss about the

proposed algorithm that was used in order to prevent

the miss-use of access policies in shipping scenario.

For this we use Local Obfuscation Calculation

algorithm in order to prevent the un-wanted access

of intruder between customer and manufacturer as

well as manufacturer and shipping company.

 The below algorithm is mainly used for

identifying the changes that was happened in the

address field of the customer who book the item in

online. Here the change was identified with two

attributes called as old and new where the old

attribute is nothing but the address filed that was

mentioned in the records while doing online

transaction initially. If the address was changed by

any of the intruder or any third party warehouse

location during the product transmission, it will be

identified as new attribute ,through which we can

identify that there was a difference in old and new

attributes and we can able to stop the product

transmission at this stage.

Step by Step Procedure

Procedure INITIALIZE(ω)

for all operator ω do

 Dω ← FINDMULTIPATHOPERATORS(ω)

end for

 for all ω ∈ Dω do

relAtts ←FINDRELATEDATTRIBUTES

for all (attnew, attold) ∈ relAtts do

TRANSMIT P(attnew|attold) TO ω

end for

 end for

end procedure

Procedure UPONRECEIVEEVENT (e)

for all att ∈ e do

 if ∃ multPathDependency(att) then

CALCULATEWORSTCASEOBFUSCATION

(ATT)

 else

CALCULATELOCALOBFUSCATION(ATT)

 end if

end for

 end procedure

Any policy consolidation algorithm two

conditions to be met:

Condition 1. For all attributes att ∈ Oω produced at ω

ARinit(att) ⊂ APω. (1)

Condition 2. For all dependent attribute pairs

(attold, attnew) ∈→∗ with

1) ωi has produced attold with access requirement

AR(attold) and obfuscation threshold (attold, x) ∈

OPωi ,

2) attnew is produced by ωj

3) attnew is consumed by ωk the access requirement

in APωj yield

AR(attold) ⊂ APωj if obf (attold, attnew, ωk) < x.

(2)

5. Implementation Modules

Implementation is the stage where the

theoretical design is automatically converted into

practically by dividing this into various modules.

We have implemented the current application in

Java Programming language with Front End as java

Swings, and Back End as SQL Server 2000 data

base.

5.1 Main Modules

Our proposed application is divided into

following 4 modules. They are as follows:

1) Event Processing

2) Manufacturer

3) Shipping Company

4) Customer

Journal of Computing Technologies (2278 – 3814) / # 149 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 149

1) Event Processing Module

Event processing systems respond to

events in the system’s environment or user interface.

The key characteristic of event processing systems is

that the timing of events is unpredictable and the

system must be able to cope with these events when

they occur.

2) Manufacturer Module

In this module manufacturer, insert the

product details and also view product request from

shipping company. Send details to shipping

company to delivery date and pickup time.

3) Shipping Company Module

In this module ship company, view

product request from customer. Then company

forward the request to manufacturer or reject the

request.

4) Customer Module
In this module customer, product order

from Ship Company and also views the order from

Ship Company. Customer views the import details.

5.2 Main Source Code for Current

Application

Here we will discuss the main source code

for the proposed application implementation. Here I

will show the data base logic through which the

current application is connecting its frond end user

interface with the storage data. For this application

we are using JSP as front end and My Sql as back

end data base.

Sample Code for Databasecon

package databaseconnection;

import java.sql.*;

public class databasecon

{

 static Connection con;

 public static Connection getconnection()

 { try

 {

 Class.forName("com.mysql.jdbc.Driver");

 con =

DriverManager.getConnection("jdbc:mysql://localho

st:3306/domain","root","admin");

 }

 catch(Exception e)

 {

 System.out.println("class error");

 }

 return con;

 }

}

Sample Code for Product_reg1

<%@ page

import="java.sql.*,databaseconnection.*"%>

<html>

<head>

<meta http-equiv="content-type"

content="text/html; charset=utf-8" />

<title>Access Policy Consolidation for Event

Processing Systems</title>

<meta name="keywords" content="" />

<meta name="description" content="" />

<link href="default.css" rel="stylesheet"

type="text/css" media="screen" />

<script language="javascript" type="text/javascript"

src="datetimepicker.js">

//Date Time Picker script- by TengYong Ng of

http://www.rainforestnet.com

//Script featured on JavaScript Kit

(http://www.javascriptkit.com)

//For this script, visit http://www.javascriptkit.com

</script>

Journal of Computing Technologies (2278 – 3814) / # 150 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 150

http://www.rainforestnet.com/
http://www.javascriptkit.com/

</head>

<body bgcolor="#FFFFCC">

<!-- start header -->

<div id="header">

Access

Policy Consolidation for Event Processing

Systems <p></p>

</div>

<!-- end header -->

<!-- star menu -->

<div id="menu">

</div>

<!-- end menu -->

<!-- start page -->

<div id="page">

 <!-- start content -->

 <div id="content">

 <%

 String

name=(String)session.getAttribute("name");

 %>

 <p><small></small>Welcome:

<%=name%>!</p>

<h2>Product Request Details</h2>

 <%

 String

a=null,b=null,c=null,d=null,e=null,f=null,g=null,h=

null;

 String mail=request.getQueryString();

 // out.print(mail);

//String fr=(String)session.getAttribute("fr");

try

{

Connection con = databasecon.getconnection();

PreparedStatement ps=con.prepareStatement("select

product,model,noofproduct,totalamt,destination,date

s,company,place from orders where id='"+mail+"'");

ResultSet rs=ps.executeQuery();

if(rs.next())

{

a=rs.getString(1);

b=rs.getString(2);

c=rs.getString(3);

d=rs.getString(4);

e=rs.getString(5);

f=rs.getString(6);

g=rs.getString(7);

h=rs.getString(8);

%>

<form name="s" action="product_req2.jsp"

method="get" onSubmit="return valid()">

<table>

<tr>

<td>

 <font

color="#000000">Company:

Pick Up Place:

<font

color="#000000">Destination:

 <font

color="#000000">Product:

 <font

color="#000000">Model:

 <font

color="#000000">No Of

Product:

 <font

color="#000000">Paid

Amount:

 <font

color="#000000">Date Of

Booking:

</td>

<td>

<input type="Text" name="comp"

value="<%=g%>" readonly="">

<input type="Text" name="pickup"

value="<%=h%>" readonly="">

<input type="Text" name="dest" value="<%=e%>"

readonly="">

<input type="Text" name="product"

value="<%=a%>" readonly="">

<input type="Text" name="model"

</td></tr></table>

<%

}

catch(Exception e1)

{

out.println(e1.getMessage());

}

%>

Journal of Computing Technologies (2278 – 3814) / # 151 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 151

6. Experimental Results

In this paper, we have proposed a new

secure algorithm called as Local Obfuscation

Calculation Algorithm for mining horizontally

distributed data bases. For example we took a

logistic shipping company as an simulation

environment, through which we showed the

advantages of event processing system. In the

logistic event processing system, there was mainly

three actors available like Manufacturer, Shipping

company, Customer, where each and every user has

their individual roles and privileges. By designing

this application we gave a new scope for the present

logistics companies in order for processing there

large complex events under the association of

multiple users.We have shown the application in a

web interface with JEE 6.0 edition .In this JEE we

are using front end as Java Server pages (JSP) and

HTML pages. As we are deploying the application

in web interface, we are using tomcat server for

deploying the application .Hence we use tomcat 7.0

as the deployment web server. We are using My Sql

data base for storing the data temporarily on to our

system and then retrieve the same data whenever

needed. This MY-SQL data base is chosen on

highest priority as it has GUI support and it is

always Auto Commit by its nature.

Sample Screens

Represents Welcome page of the proposed event

processing system

Represents Manufacturer Login page of the

Proposed Event Processing System

7. Conclusion

In this paper, we have proposed an new multi-hop

event processing network which is used for filing

the gap that is available in the current event

processing systems like shipping scenario. This

paper is used mainly for addressing the inheritance

and consolidation of access policies in

heterogeneous CEP systems. We identified a lack of

security in multi-hop event processing networks and

proposed a solution to avoid this problem. Our

algorithm includes the obfuscation of information,

which can happen during the correlation process,

and uses the obfuscation value as a decision-making

basis whether inheritance is needed.

8. Future Enhancement

In the future we can extend the research

of giving privacy preserving for event processing

system in almost all types of domains what we

choose for publishing. The proposed concept is very

good in providing access control for event

processing systems.

Journal of Computing Technologies (2278 – 3814) / # 152 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 152

9. References

[1] A. Buchmann and B. Koldehofe, “Complex

event processing,” it - Information Technology,

vol. 51:5, pp. 241–242, 2009.

[2] A. Hinze, K. Sachs, and A. Buchmann,

“Event-based applications and enabling

technologies,” in Proceedings of the Third

ACM International Conference on Distributed

Event-Based Systems, ser. DEBS ’09. New

York, NY, USA: ACM, 2009, pp. 1:1–1:15.

[3] P. Pietzuch, “Hermes: A scalable event-

based middleware,” Ph.D. dissertation,

University of Cambridge, 2004.

[4] G. Li and H.-A. Jacobsen, “Composite

subscriptions in content-based

publish/subscribe systems,” in Proc of the 6
th

Int. Middleware Conf., 2005, pp. 249–269.

[5] G. G. Koch, B. Koldehofe, and K.

Rothermel, “Cordies: expressive event

correlation in distributed systems,” in Proc. of

the 4th ACM International Conference on

Distributed Event-Based Systems (DEBS),

2010, pp. 26–37.

[6] B. Koldehofe, B. Ottenw¨alder, K.

Rothermel, and U. Ramachandran, “Moving

range queries in distributed complex event

processing,” in Proc. of the 6th ACM

International Conference on Distributed Event-

Based Systems (DEBS), 2012, pp. 201–212.

[7] B. Schilling, B. Koldehofe, U. Pletat, and

K. Rothermel, “Distributed heterogeneous

event processing: Enhancing scalability and

interoperability of CEP in an industrial

context,” in Proc. of the 4th ACM International

Conference on Distributed Event-Based

Systems (DEBS), 2010, pp. 150–159.

[8] B. Schilling, B. Koldehofe, and K.

Rothermel, “Efficient and distributed rule

placement in heavy constraint-driven event

systems,” in Proc. of the 10th IEEE

International Conference on High

Performance Computing and Communications

(HPCC), 2011, pp. 355–364.

[9] M. A. Tariq, B. Koldehofe, A. Altaweel,

and K. Rothermel, “Providing basic security

mechanisms in broker-less publish/ subscribe

systems,” in Proceedings of the 4th ACM Int.

Conf. on Distributed Event-Based Systems

(DEBS), 2010, pp.38–49.

[10] L. I. W. Pesonen, D. M. Eyers, and J.

Bacon,“Encryption-enforced access control in

dynamic multidomain publish/subscribe

networks,” in Proc. of the 2007 ACM

International Conference on Distributed Event-

Based Systems (DEBS), 2007, pp. 104–115.

[11] J. Bacon, D. M. Eyers, J. Singh, and P. R.

Pietzuch, “Access control in publish/subscribe

systems,” in Proc. of the 2
nd

 ACM

International Conference on Distributed Event-

Based Systems (DEBS), 2008, pp. 23–34.

Journal of Computing Technologies (2278 – 3814) / # 153 / Volume 3 Issue 10

© 2014 JCT. All Rights Reserved 153

