

A Novel Identity based Secure Distributed

Data Storage System in Cloud Computing

based on Database –as-a-Service

D.S.Priyanka
#1

, Mr. B. Prasad
*2

#1

M.TECH, Department of Information Technology, Vignan’s Institute of
Information Technology,JNTU- KAKINADA, Andhra Pradesh, India

#1
priyanka.dadi@yahoo.com

*2

Associate Professor, Department of Information Technology, Vignan’s Institute
of Information Technology, Vishakhapatnam, Andhra Pradesh, India

*2
prasad_bode@yahoo.com

Abstract

Storage security is a specialty area of

security that is concerned with securing data storage

systems and ecosystems and the data that resides on

these systems. The same storage security schema if

applied on distributed environment may gives more

security for the data which is stored on remote

servers. Now a day’s cloud has become one of the

fascinating domain for storing a large number of

data on to a server from remote locations, stores

them and gives facility for accessing the stored data

by using a facility called as “PAUZ”. In general the

data which is stored in the cloud is encrypted and

stored on to the server location with the help of

intermediate proxy servers. In general proxy servers

are those which can convert encrypted files for the

data owner to encrypted files for the data receiver

without knowing the original information. For space

complexity the data owner will remove the original

files from his system. As data was stored on a

remote server, we must mainly concentrate on two

major issues like confidentiality and integrity of the

outsourced data. In this paper, we have proposed

two new identity-based secure distributed data

storage (IBSDDS) schemes. Our two new schemes

can capture the following properties: (1) Firstly

whenever the data/file which is uploaded by file

owner on remote server he will decide the file access

permission independently on his own without the

help of any third party private key generator

(PKG).(2) For one query, a receiver can only access

appropriate one file, instead of all files that are

stored by the owner. Our two new schemes are

secure against the collusion attacks, namely even if

the receiver can compromise the proxy servers; he

cannot obtain the owner’s secret key. To the best of

our knowledge, it is the first IBSDDS schemes

where access permissions is made by the owner for

an exact file and collusion attacks can be protected

in the standard model. We also implemented mailing

concept as an extension for this paper in order to

send the file name and key to the requested receiver

mail id instead of sending directly along with the

data. This facility gives high security as all the

participating parties will have a proper

authentication before request arrives to them, so that

there will be no chance of getting the files by

unauthorized users.

Keywords

Cloud Computing, Access Control Policy,

Data Security, Identity-Based Data Storage Systems,

Encryption, Proxy Server

© 2014 JCT. All Rights Reserved 182

Journal of Computing Technologies (2278 – 3814) / # 182 / Volume 3 Issue 10

mailto:priyanka.dadi@yahoo.com
mailto:prasad_bode@yahoo.com

1. Introduction

Cloud computing is a new computing in

which large groups of remote servers

are networked to allow the centralized data storage,

and online access to computer services or resources.

Clouds can be classified as public, private or hybrid.

Cloud computing relies on restricting sharing of

resources to achieve coherence and economies of

scale, similar to a utility (like the electricity grid)

over a network which is shown clearly in figure 1.

At the foundation of cloud computing is the broader

concept of converged infrastructure and services.

Cloud computing is a new technology which

emerges with a lot of facilities that are really

beneficial for the end users to manage their personal

files with the convenient notion called database-as-a-

service (DAS) [1], [2], [3].

Figure 1. Represents the architecture of Cloud

Computing

By using this new DAS schemes, any data

user can outsource his/her encrypted data files to

untrusted proxy servers. Proxy servers can also

perform some functions on the outsourced cipher

texts data which was stored by the data owners

without knowing anything about the original files.

Unfortunately, this technique hasn’t been in practice

extensively. The main reason which is behind this

cause is users are generally concentrating on the

main factors like confidentiality, integrity and query

of the outsourced files as cloud computing is a lot

more complicated than the local data storage

systems, as the cloud is managed by an untrusted

third party user. As the data owner stores his

valuable data on a third party proxy server, he/she

will remove the original content in their system in

order to reduce the space wastage. Therefore, how to

guarantee the outsoured files which can’t be

accessed by the unauthorized users and not modified

by proxy servers is an important problem that has

been considered in the data storage research

community. Furthermore, we also need to

concentrate how efficiently the data user can access

his/her files which were stored by them in proxy

server. Consequently, a lot of research around these

topics grows significantly.

Today in cloud computing domain,

confidentiality is proposed mainly to prevent

unauthorized users from accessing the most

sensitive data as it is subject to unauthorized

disclose and access after being outsourced. Since the

introduction of Database-As-A-Service, the

confidentiality of outsourced data has been the

primary focus among the research community. To

provide confidentiality to the outsourced data,

encryption schemes are deployed [4], [5], [6], [7],

[8].

Figure 2. Represents the architecture of the

Proposed IBSDDS Schema

In cloud computing domain, integrity can

prevent outsourced data from being re- placed and

© 2014 JCT. All Rights Reserved 183

Journal of Computing Technologies (2278 – 3814) / # 183 / Volume 3 Issue 10

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Hybrid_cloud
http://en.wikipedia.org/wiki/Economies_of_scale
http://en.wikipedia.org/wiki/Economies_of_scale
http://en.wikipedia.org/wiki/Electrical_grid
http://en.wikipedia.org/wiki/Converged_infrastructure

modified. Some schemes have been proposed to

protect the integrity of the outsourced data, such as

proof of retrievability [9], [10], [11], [12], [13] and

provable data possession [14], [15], [16]. In these

schemes, digital signature schemes and message

authentication codes (MAC) are deployed. Query in

data storage is executed between a receiver and a

proxy server. The proxy server can perform some

functions on the outsourced ciphertexts and convert

them to those for the receiver which is shown clearly

in figure 2. As a result, the receiver can obtain the

data outsourced by the owner without the proxy

server knowing the content of the data [17], [18],

[19], [20].

2. Literature Survey

 In this section we will describe the assumptions

that are used in the proposed paper. This section

mainly surveys on the literature of our proposed new

identity- based secure distributed data storage

(IBSDDS) schemes.

2.1 Cloud Infrastructure Provider

Cloud computing, or in simpler shorthand

just "the cloud", also focuses on maximizing the

effectiveness of the shared resources. Cloud

resources are usually not only shared by multiple

users but are also dynamically reallocated per

demand. This can work for allocating resources to

users which is shown in Figure 3. For example, a

cloud computer facility that serves European users

during European business hours with a specific

application (e.g., email) may reallocate the same

resources to serve North American users during

North America's business hours with a different

application (e.g., a web server). This approach

should maximize the use of computing power thus

reducing environmental damage as well since less

power, air conditioning, rackspace, etc. are required

for a variety of functions. With cloud computing,

multiple users can access a single server to retrieve

and update their data without purchasing licenses for

different applications.The term "moving to cloud"

also refers to an organization moving away from a

traditional CAPEX model (buy the dedicated

hardware and depreciate it over a period of time) to

the OPEX model (use a shared cloud infrastructure

and pay as one uses it).Proponents claim that cloud

computing allows companies to avoid upfront

infrastructure costs, and focus on projects that

differentiate their businesses instead of on

infrastructure. Proponents also claim that cloud

computing allows enterprises to get their

applications up and running faster, with improved

manageability and less maintenance, and enables IT

to more rapidly adjust resources to meet fluctuating

and unpredictable business demand. Cloud providers

typically use a "pay as you go" model. This can lead

to unexpectedly high charges if administrators do

not adapt to the cloud pricing model. The present

availability of high-capacity networks, low-cost

computers and storage devices as well as the

widespread adoption of hardware

virtualization, service-oriented architecture,

and autonomic and utility computing have led to a

growth in cloud computing. Cloud vendors are

experiencing growth rates of 50% per annum.

Figure 3.Represents the architecture of Cloud

Infrastructure as a provider

© 2014 JCT. All Rights Reserved 184

Journal of Computing Technologies (2278 – 3814) / # 184 / Volume 3 Issue 10

http://en.wikipedia.org/wiki/Capital_expenditure
http://en.wikipedia.org/wiki/Operating_expense
http://en.wikipedia.org/wiki/Hardware_virtualization
http://en.wikipedia.org/wiki/Hardware_virtualization
http://en.wikipedia.org/wiki/Hardware_virtualization
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Autonomic_Computing

2.2 Data Storage Systems

Data storage systems are the new systems

which enable users to store their data to external

proxy servers to enhance the access and availability,

and reduce the maintenance cost. Author Samaritan

and Author Vimercati [21] addressed the privacy

issues in data outsourcing expanding from the data

confidentiality to data utility, and pointed out the

main research directions in the protection of the

externally stored data.

2.3 Networked File Systems

In these systems, proxy servers are

assumed to be trusted. They authenticate receivers

and validate access permissions. The interactions be-

tween the proxy servers and receivers are executed

in a secure channel. Therefore, these systems cannot

provide an end-to-end data security, namely they

cannot ensure the confidentiality of the data stored at

the proxy server [22]. In these schemes, a receiver

authenticates himself to the proxy server using his

password. Then, the proxy server passes the

authentication result to the file owner. The owner

will make an access permission according to the

received information.

2.4 Identity-based Proxy Re-

encryption Schema (IBPRES)

Proxy cryptosystem was introduced by

Mambo and Okamoto to delegate the decryption

power to a designated decryptor. Then, Blaze,

Bleumer, and Strauss proposed an atomic proxy

cryptosystem where a semi-trusted proxy server can

transfer a cipher text for the original decryptor to a

cipher text for the designated decryptor without

knowing the plaintext.

Proxy cryptosystem as an efficient

primitive has been used in email forwarding, law

enforcement and data storage. Identity- based

cryptosystem introduced by Shamir is a sys- tem

where the public key can be any arbitrary string and

the secret key is issued by a trusted party called the

private key generator (PKG). Being different from

public key infrastructure (PKI), two parties can

communicate directly without verifying their public

key certificates in identity-based systems. The first

secure and practical identity-base encryption (IBE)

was proposed by Boneh and Franklin based on

pairing.

3. Proposed Algorithm and its

Methodology

We are using identity-based secure

distributed data storage (IBSDDS) scheme as our

proposed scheme. There are mainly four entities in

(IBSDDS) scheme:

1. The Private Key Generator

(PKG),

2. The Data Owner,

3. The Proxy Server And

4. The Receiver.

The PKG validates the users’ identities

and issues secret keys to them. The data owner

encrypts his data and outsources the ciphertexts to

the proxy servers.

Proxy servers store the encrypted data and

transfer the cipher text for the owner to the

ciphertext for the receiver when they obtain access

permission (re-encryption key) from the owner. The

receiver authenticates himself to the owner and

decrypts the re-encrypted ciphertext to obtain the

data. An IBSDDS scheme consists of the following

algorithms:

Setup(1
l
)  (params,MSK)

The setup algorithm takes as input a

security parameter 1l,and outputs the public
parameters params and a master secret MSK.

KeyGen (params, ID, MSK)SKID.

The key generation algorithm takes as

input the public parameters params,an identity ID
and the master secret key MSK,and outputs a secret

© 2014 JCT. All Rights Reserved 185

Journal of Computing Technologies (2278 – 3814) / # 185 / Volume 3 Issue 10

key SKID for the identity ID.

Encryption (params, ID, MSK) CTi.

Suppose that there are k messages {Mi}.To encrypt
the message Mi,the encryption algorithm takes as
input the public parameters params,the identity ID
and the message M,and outputs the ciphertextCTi =
(Ci,1,Ci,2), for i = 1,2,….,k.It sends the ciphertexts
CTi to the proxy servers.

Query (ID
’
, SKID’, CTi)  AI.

The query algorithm takes as input the

receiver’s identity ID’,the receiver’ssecret key SKID
and the ciphertextCTi,and outputs an authentication
information AI.It sends (ID’,AI,CTi) to the proxy
server. The proxy server redirects (ID’, AI, Ci, 2) to
the owner with identity ID.

Decryption

 There are two algorithms. One is for the owner

and the other is for the receiver.

1) Decryption1 (params, SKID, CTi)  Mi.

 The owner decryption algorithm takes as
input the public parameters params, the
owner’s secret key SKID and cipher text CTi,
and outputs the message Mi..

2) Decryption 2(params, SKID’CTi’) Mi.

The receiver decryption algorithm takes as

input the public parameters params, the
receiver’s secret key SKID’ and the re-encrypted
cipher text CTi, and outputs the message Mi.

4. Proposed Algorithm Flow

Chart

The below diagram indicates the proposed

IBSDDS flow of actions from start to end. This will

clearly gives an idea how the IBSDDS algorithm

gives security for the cloud data storage.

L o g i n

E N D

D a ta B as e

V a lid U s e r

F il e A c c e s s

C o nd it io n

S i g n U p

Y es

Fa lse

O w n erU s e r

F il e U p lo a d F i le S h a re

E n c r y p t F i le A c c e s s
F il e n a m e & k e y

S e r v e r

Figure 4.Represents the Flow chart of proposed

IBSDDS Algorithm

5. Implementation Modules
Implementation is a stage where the

theoretical design is automatically converted into

practical form. We have implemented the current

application in Java Programming language with

Front End as JSP, HTML, and Back End as My-

SQL Server data base.

5.1 Main Modules

 This current application is mainly divided

into following four modules based on the project

flow.

1. Data Owner Module

2. Private key Generator Module

3. Proxy Server Module

4. The Receiver Module

© 2014 JCT. All Rights Reserved 186

Journal of Computing Technologies (2278 – 3814) / # 186 / Volume 3 Issue 10

1. Data Owner Module

In this module, first the new data owner

registers and then gets a valid login credentials.

After logged in, the data owner has the permission

to upload their file into the Cloud Server. The data

owner encrypts his data and outsources the

ciphertexts to the proxy servers.

2. Private Key Generator Module

In this module, the private key generator

(PKG) validates the users’ identities and issues

secret keys to them. The key is generated and sent to

their respective mail id’s with the file name and the

corresponding key values.

3. Proxy Server Module

Proxy servers store the encrypted data and

transfer the cipher text for the owner to the cipher

text for the receiver when they obtain access

permission (re-encryption key) from the owner. In

these systems, proxy servers are assumed to be

trusted. They authenticate receivers and validate

access permissions. The interactions between the

proxy servers and receivers are executed in a secure

channel. Therefore, these systems cannot provide an

end-to-end data security, namely they cannot ensure

the confidentiality of the data stored at the proxy

server. In these schemes, a receiver authenticates

himself to the proxy server using his password.

Then, the proxy server passes the authentication

result to the file owner. The owner will make access

permission according to the received information.

4. Receiver Module

The receiver authenticates himself to the

owner and decrypts the re-encrypted Ciphertext to

obtain the data. In these systems, an end to-end

security is provided by cryptographic protocols

which are executed by the file owner to prevent

proxy servers and unauthorized users from

modifying and accessing the sensitive files. These

systems can be divided into two types: shared file

system and non-shared system. In shared file

systems the owner can share his files with a group of

users. Cryptographic techniques deployed in these

systems are key sharing, key agreement and key

revocation. In non-shared file systems in order to

share a file with another user, the owner can

compute an access key for the user using his secret

key. In these two systems, the integrity of the

sensitive files is provided by digital signature

schemes and message authentication codes (MAC).

5.2 Main Source Code for Proposed

Application

Here we will discuss the main source code

for the proposed application implementation. Here I

will show the data base logic through which the

current application is connecting its frond end user

interface with the storage data. For this application

we are using JSP as front end and My Sql as back

end data base. As we implement the application in

Java Programming language we are using JDBC as

data base connectivity for implementing data base

connection with user interface.Aslo we are using

type 4 driver for implementing the connection with

the data base and front end application.In this

section we will be discussing some of the important

sample codes for connecting the data base and the

main logic for sending key to the registered user

mail id’s.

Sample Code for Databasecon

/*

 * Designed and Developed by Priyanka @

Vignan M.Tech 2012 -2014.
 */

package design;

import java.util.*;

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.util.Iterator;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

© 2014 JCT. All Rights Reserved 187

Journal of Computing Technologies (2278 – 3814) / # 187 / Volume 3 Issue 10

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import org.apache.commons.fileupload.FileItem;

import

org.apache.commons.fileupload.FileUploadExceptio

n;

import

org.apache.commons.fileupload.disk.DiskFileItemF

actory;

import

org.apache.commons.fileupload.servlet.ServletFileU

pload;

public class upload extends HttpServlet {

 SimpleFTPClient client;

 File file;

 protected void processRequest(HttpServletRequest

request, HttpServletResponse response)

 throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-

8");

 PrintWriter out = response.getWriter();

 try {

 DiskFileItemFactory diskFileItemFactory =

new DiskFileItemFactory();

 diskFileItemFactory.setRepository(file);

 diskFileItemFactory.setSizeThreshold(1 *

1024 * 1024);

 ServletFileUpload newHUpload = new

ServletFileUpload(diskFileItemFactory);

 List items =

newHUpload.parseRequest(request);

 Iterator iterator = items.iterator();

 FileItem fileItem = (FileItem) iterator.next();

 Connection con = null;

 PreparedStatement pstm = null;

 FileInputStream fis = null;

 long size = 0;

 client = new SimpleFTPClient();

 client.setHost("ftp.drivehq.com");

 client.setUser("VIGNAN");

 client.setPassword("VIGNAN");

 client.setRemoteFile(fileItem.getName());

 boolean log = client.connect();

Class.forName("com.mysql.jdbc.Driver");

 con =

DriverManager.getConnection("jdbc:mysql://loc

alhost:3306/idbased", "root", "root");

 // List items =

uploadHandler.parseRequest(request);

 Iterator itr = items.iterator();

 String sql = "insert into files

(file,name,user,skey)values(?,?,?,?)";

 pstm = con.prepareStatement(sql);

 // while (itr.hasNext()) {

 FileItem item = (FileItem) itr.next();

 System.out.println("getD

"+item.getName());

pstm.setBinaryStream(1,item.getInputStream());

 pstm.setString(2, item.getName());

 HttpSession

session = request.getSession(true);

 //HttpSession session =

request.getSession(false);

 pstm.setString(3,

(String)session.getAttribute("us"));

 Random r =

new Random();

 int tt = r.nextInt(1000-500)+500;

 pstm.setString(4, Integer.toString(tt));

 pstm.execute();

 session.setAttribute("nn",

item.getName());

 System.out.println("Values inserted");

 if (log) {

 if

(client.uploadFile(fileItem.getInputStream())) {

response.sendRedirect("owneruserpage.jsp?msg=

sucess..!");

© 2014 JCT. All Rights Reserved 188

Journal of Computing Technologies (2278 – 3814) / # 188 / Volume 3 Issue 10

 } else {

response.sendRedirect("owneruserpage.jsp?msgg=

NOT sucess..!");

 }

 } else {

 out.println("not connected");

 }

 } catch (SQLException ex) {

Logger.getLogger(upload.class.getName()).log(Leve

l.SEVERE, null, ex);

 } catch (ClassNotFoundException ex) {

Logger.getLogger(upload.class.getName()).log(Leve

l.SEVERE, null, ex);

 } catch (FileUploadException ex) {

Logger.getLogger(upload.class.getName()).log(Leve

l.SEVERE, null, ex);

 } finally {

 out.close();

 }

 }

 // <editor-fold defaultstate="collapsed"

desc="HttpServlet methods. Click on the + sign on

the left to edit the code.">

 /**

 * Handles the HTTP

 * <code>GET</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific

error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP

 * <code>POST</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific

error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest

request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

Sample code for Mail

Atatchments

%@page import="java.io.*,java.util.*,javax.mail.*"%>
<%@ page

import="javax.mail.internet.*,javax.activation.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*"
%>

<%@page import="java.sql.ResultSet"%>

<%@page import="java.util.Random"%>
<%@page import="java.sql.Statement"%>

<%@page import="java.sql.DriverManager"%>

<%@page import="java.sql.Connection"%>
<%

String mail = null;

 System.out.println(".......1......");
 String me = session.getAttribute("us").toString();

 System.out.println(".......2......");

 String fm = session.getAttribute("nn").toString();
 System.out.println(".......3......"+fm);

 //String mail

=session.getAttribute("mm").toString();
 String frnd = request.getParameter("user");

 System.out.println(".......4......");

© 2014 JCT. All Rights Reserved 189

Journal of Computing Technologies (2278 – 3814) / # 189 / Volume 3 Issue 10

 Random r = new Random();

 int ii = r.nextInt(100000 - 50000) + 50000;
 String k = Integer.toString(ii);

 // String k1 = ii+"";

 System.out.println(".......5......");
 System.out.println(" secert key is:" + ii);

 System.out.println(".......6......");

 Class.forName("com.mysql.jdbc.Driver");
 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:330

6/idbased", "root", "root");

 Statement st = con.createStatement();

 Statement st1 = con.createStatement();
 ResultSet rs = st1.executeQuery("select * from

regpage_user where user='" + frnd + "'");

 if (rs.next())
 mail = rs.getString("mail");

 // System.out.println(" friend name" + mail);

 int i = st.executeUpdate("update files set user ='" +

me + "',friend ='" + frnd + "', skey='" + ii + "' where name

= '" + session.getAttribute("nn").toString() + "' ");
String host="", user="", pass="";

host ="smtp.gmail.com"; //"smtp.gmail.com";

user ="satyapriyanka.tuni@gmail.com";
//"YourEmailId@gmail.com" // email id to send the emails

pass ="8886231618"; //Your gmail password

String SSL_FACTORY =

"javax.net.ssl.SSLSocketFactory";

String to =user; // out going email id

String from ="customerservice404@gmail.com"; //Email

id of the recipient

String subject=(String)session.getAttribute("subject");
//String subject ="welcome";

String messageText =""+user+"
password
is="+ii+"
File Name="+fm+"";

//session.setAttribute("userid",userid);
//session.setAttribute("password",c);

session.setAttribute("emailid",user);

boolean sessionDebug = true;
if (i != 0) {

Properties props = System.getProperties();

props.put("mail.host", host);
props.put("mail.transport.protocol.", "smtp");

props.put("mail.smtp.auth", "true");

props.put("mail.smtp.", "true");

props.put("mail.smtp.port", "465");

props.put("mail.smtp.socketFactory.fallback", "false");

props.put("mail.smtp.socketFactory.class",
SSL_FACTORY);

Session mailSession = Session.getDefaultInstance(props,

null);
mailSession.setDebug(sessionDebug);

Message msg = new MimeMessage(mailSession);

msg.setFrom(new InternetAddress(from));
InternetAddress[] address = {new InternetAddress(mail)};

msg.setRecipients(Message.RecipientType.TO, address);

msg.setSubject(subject);
msg.setContent(messageText, "text/html"); // use setText if

you want to send text

Transport transport = mailSession.getTransport("smtp");
transport.connect(host, user, pass);

try {

transport.sendMessage(msg, msg.getAllRecipients());
//out.println("message successfully sended"); // assume it

was sent

//response.sendRedirect("key.jsp");
response.sendRedirect("share.jsp?sh=Secert key Send

success");

}
catch (Exception err) {

out.println("message not successfully
sended"+err.getMessage()); // assume it’s a fail

}

 }

else {
 response.sendRedirect("share.jsp?shr=Action

fails");

 }

%>

6. Enhanced System

Architecture

 The following diagram represents the

enhanced system architecture /flow of IBSDDS

model which is clearly shown in figure.2. In the

proposed paper, we have extended the same

IBSDDS schema with more enhanced security by

including a mailing concept like each and every user

whenever registers in his/her account ,they should

provide a valid email id, where the data owner

uploads any data can select any of the user from the

set of user list .The data owner will now try to give

© 2014 JCT. All Rights Reserved 190

Journal of Computing Technologies (2278 – 3814) / # 190 / Volume 3 Issue 10

key for accessing the uploaded file for the selected

user, the key is sent to the selected user registered

mail id and the end user should verify his valid mail

id and with that key only he can decrypt the data if

not he cannot access his data files.In the above

section we will be discusiing about the mail concept

and its logic part.

7. Experimental Results

In this paper, we have proposed a new

secure algorithm called as IBSDDS Algorithm for

providing security for the data which is used for

distributed data storage in the cloud. By designing

this application we gave a new scope for the present

cloud vendors a proof of how to give security for

their data there large complex data storage under

the remote systems.We have shown the application

in a web interface with JEE 6.0 edition .In this JEE

we are using front end as Java Server pages (JSP)

and HTML pages. As we are deploying the

application in web interface, we are using tomcat

server for deploying the application .Hence we use

tomcat 7.0 as the deployment web server. We are

using My Sql data base for storing the data

temporarily on to our system and then retrieve the

same data whenever needed. This MY-SQL data

base is chosen on highest priority as it has GUI

support and it is always Auto Commit by its nature.

Sample Screen of Home page

Sample Screen for Data Owner

Login

Sample Screen for Uploading a File

by Data Owner

© 2014 JCT. All Rights Reserved 191

Journal of Computing Technologies (2278 – 3814) / # 191 / Volume 3 Issue 10

Sample Screen for giving file share

permission

Sample Screen for User Registration

Sample Screen for User downloading

the file with specifying File Name

and Secret Key

Sample screen for Download the File

by Data User

© 2014 JCT. All Rights Reserved 192

Journal of Computing Technologies (2278 – 3814) / # 192 / Volume 3 Issue 10

8. Conclusion

Now a day’s by using secure distributed

data storage schema, we can reduce a lot of burden

of maintaining a large number of files from the data

owner to proxy servers. Identity-based secure

distributed data storage (IBSDDS) schemes are a

special kind of distributed data storage schemes

where users are identified by their identities and can

communicate without the need of verifying the

public key certificates. In this paper, we proposed

two new IBSDDS schemes in standard model

where, for one query, the receiver can only access

one file, instead of all files. Furthermore, the access

permission can be made by the owner, instead of the

trusted party. Notably, our schemes are secure

against the collusion attacks. The first scheme is

CPA secure, while the second one is CCA secure.

9. Future scope

 As a future work the same application

should be extended for giving security for the files

under transfer from one system to other. If there was

any file been modified un-authorized then it should

report the error or alert for the cloud server.

10. References

[1] H. Hacig¨um¨us, B. R. Iyer, C. Li, and S.

Mehrotra, “Executing SQL over encrypted data in

the database-service-provider model,” in

Proceedings: SIGMOD Conference - SIGMOD’02

(M. J. Franklin, B. Moon, and A. Ailamaki, eds.),

vol. 2002, (Madison, Wisconsin, USA), pp. 216–

227, ACM, Jun. 2002.

[2] L. Bouganim and P. Pucheral, “Chip-secured

data access: Confidential data on untrusted servers,”

in Proc. International Conference on Very Large

Data Bases - VLDB’02, (Hong Kong, China), pp.

131–142, Morgan Kaufmann, Aug. 2002.

[3] U. Maheshwari, R. Vingralek, and W. Shapiro,

“How to build a trusted database system on

untrusted storage,” in Proc. Symposium on

Operating System Design and Implementation -

OSDI’00, (San Diego, California, USA), pp. 135–

150, USENIX, Oct. 2000.

[4] A. Ivan and Y. Dodis, “Proxy cryptography

revisited,” in Proc.Network and Distributed System

Security Symposium - NDSS’03, (San Diego,

California, USA), pp. 1–20, The Internet Society,

Feb. 2003.

[5] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, “Improved proxy re-encryption

schemes with applications to secure distributed

storage,” in Proc. Network and Distributed System

Security Symposium - NDSS’05, (San Diego,

California, USA), pp. 1–15, The Internet Society,

Feb. 2005.

[6] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, “Improved proxy re-encryption

schemes with applications to secure distributed

storage,” ACM Transactions on Information and

System Security, vol. 9, no. 1, pp. 1–30, 2006.

[7] S. D. C. di Vimercati, S. Foresti, S. Paraboschi,

G. Pelosi, and P. Samarati, “Effficient and private

access to outsourced data,” in Proc. International

Conference on Distributed Computing Systems -

ICDCS’11, (Minneapolis, Minnesota, USA), pp.

710–719, IEEE, Jun. 2011.

[8] H.-Y. Lin and W.-G. Tzeng, “A secure erasure

code-based cloud storage system with secure data

forwarding,” IEEE Transactions on Parallel and

Distributed Systems, Digital Object Indentifier

10.1109/TPDS.2011.252 2012.

[9] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Proc. Advances in Cryptology -

ASIACRYPT’08 (J. Pieprzyk, ed.), vol. 5350 of

Lecture Notes in Computer Science, (Melbourne,

Australia), pp. 90–107, Springer, Dec. 2008.

[10] A. Juels and B. S. K. Jr., “PORs: Proofs of

retrievability for large files,” in Proceedings: ACM

Conference on Computer and Communications

Security - CCS’07 (P. Ning, S. D. C. di Vimercati,

and P. F.Syverson, eds.), (Alexandria, Virginia,

USA), pp. 584–597, ACM,Oct. 2007.

© 2014 JCT. All Rights Reserved 193

Journal of Computing Technologies (2278 – 3814) / # 193 / Volume 3 Issue 10

[11] Y. Dodis1, S. Vadhan, and D. Wichs, “Proofs

of retrievability via hardness amplification,” in Proc.

Theory of Cryptography Conference - TCC’09 (O.

Reingold, ed.), vol. 5444 of Lecture Notes in

Computer Science, (San Francisco, CA, USA), pp.

109–127, Springer, Mar.2009.

[12] K. D. Bowers, A. Juels, and A. Oprea, “Proofs

of retrievability: Theory and implementation,” in

Proc. ACM Cloud Computing Security Workshop -

CCSW’09, (Chicago, Illinois, USA), pp. 43–53,

ACM, Nov. 13 2009.

[13] G. Ateniese, S. Kamara, and J. Katz, “Proofs of

storage from homomorphic identification protocols,”

in Proc. Advances in Cryptology - ASIACRYPT’09

(M. Matsui, ed.), vol. 5912 of Lecture Notes in

Computer Science, (Tokyo, Japan), pp. 319–333,

Springer, Dec. 2009.

[14] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. Peterson,and D. Song, “Provable data

possession at untrusted stores,”in Proc. ACM

Conference on Computer and Communications

Security- CCS’07 (P. Ning, S. D. C. di Vimercati,

and P. F. Syverson, eds.),(Alexandria, Virginia,

USA), pp. 598–610, ACM, Oct. 2007.

[15] G. Ateniese, R. D. Pietro, L. V. Mancini, and

G. Tsudik, “Scalable and efficient provable data

possession,” in Proc. International conference on

Security and privacy in communication netowrks -

SecureComm’08, (Istanbul, Turkey), Sep., ACM,

2008.

[16] C. C. Erway, A. K¨upc¨u, C. Papamanthou, and

R. Tamassia, “Dynamic provable data possession,”

in Proc. ACM Conference on Computer and

Communications Security - CCS’09 (E. Al-Shaer, S.

Jha, and A. D. Keromytis, eds.), (Chicago, Illinois,

USA), pp. 213–222, ACM, Nov. 2009.

[17] B. Carbunar and R. Sion, “Toward private joins

on outsourced data,” IEEE Transactions on

Knowlege and Data Engineering, vol. 9, no. 24, pp.

1699–1710, 2012.

[18] J. Hur, “Improving security and efficiency in

attribute-based data sharing,” IEEE Transactions on

Knowlege and Data Engineering, p. Digital Object

Indentifier 10.1109/TKDE.2011.78.

[19] J. Hur and D. K. Noh, “Attribute-based access

control with efficient revocation in data outsourcing

systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 22, no. 7, pp. 1214–1221,

2011.

[20] M. L. Yiu, G. Ghinita, C. S. Jensen, and P.

Kalnis, “Enabling search services on outsourced

private spatial data,” The VLDB Journal, vol. 19, no.

3, pp. 363–384, 2010.

[21] P. Samarati and S. D. C. di Vimercati, “Data

protection in outsourcing scenarios: Issues and

directions,” in Proc. ACM Symposium on

Information, Computer and Communications

Security - ASIACCS’10 (D. Feng, D. A. Basin, and

P. Liu, eds.), (Beijing, China), pp. 1–14, ACM, Apr.

2010.

[22] V. Kher and Y. Kim, “Securing distributed

storage: Challenges, techniques, and systems,” in

Proc. ACM Workshop On Storage Security And

Survivability - StorageSS’05 (V. Atluri, P. Samarati,

W. Yurcik, L. Brumbaugh, and Y. Zhou, eds.),

(Fairfax, VA, USA), pp. 9–25, ACM, Nov. 2005.

© 2014 JCT. All Rights Reserved 194

Journal of Computing Technologies (2278 – 3814) / # 194 / Volume 3 Issue 10

	page5

