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ABSTRACT – This paper aims to construct the 

membership function for fuzzy retrial queue system 

using non-linear programming approach with three 

fuzzy variables, fuzzified exponential arrival, retrial 

and service rate which are represented as fuzzy 

numbers. Using α-cut approach, fuzzy retrial queues 

can be reduced to a family of crisp retrial queues with 

different α-cuts. Triangular fuzzy numbers are used 

to demonstrate the validity of the proposal. The 

discussion of this paper is confined to systems with 

one two fuzzy variables: nevertheless, the procedure 

can be extended to systems with more than two fuzzy 

variables. Numerical illustration has been carried out 

successfully. 

 

Keywords - Orbit, Triangular Fuzzy umber, 

Membership functions, Retrial queues and 

Parametric Programming 

I. INTRODUCTION 

In retrial queue system, an arriving 

customer who finds the server busy is obliged to 

leave the service area and join a pool of unsatisfied 

customers called the “Orbit”. From the orbit, each 

customer further applies for the service after an 

uncertain amount of time called Retrial time. 

There are so many applications found for 

retrial queues in science and engineering streams. 

Recently Diamond and Alfa [3] constructed a 

method for approximating the stationary 

distributions and waiting time moments of M/PH/1 

retrial queue with phase inter-retrial times. The 

BMAP/G/1 retrial system with search for 

customers immediately on termination of service 

was studied by  Dudin et al [1], in which inter-

retrial is followed by exponential distribution  and 

duration of search is characterized by a generally 

distributed variable. Lopez-Herrero [5] presented 

the explicit formulae for the probabilities of the 

number of customers being served in a busy period 

and an explicit expression for the second moment 

for M/G/1 retrial queueing system has also been 

given. Chuen-Horng Lin, Jau-Chuan, Hsin Huang 

[2] constructed the membership function for fuzzy 

retrial queueing system using Trapezoidal fuzzy 

number with the concept of non-linear 

programming approach with three fuzzy variables, 

fuzzified exponential arrival, retrial and service 

rate. The model in notation form can be denoted by 

FM/FM/1/1-FR where F denotes the fuzzified 

exponential rate with single server and single 

system capacity. The fuzzy expected waiting time 

in the system for retrial system as well as expected 

number of customers in the system has been 

presented through α-cut and graphs. α-cut approach 

is used to construct system characteristic 

membership function. 

II. FUZZY SET THEORY [4] 

Definition.2.1. In the universe of discourse X, a 

fuzzy subset Ã on X is defined by the membership 

function )(~ X
A

  which maps each element x in X 

to a real number in the interval [0, 1]. )(~ X
A

  

denotes the grade or degree of membership and it is 

usually denoted as  

)(~ X
A

 :X→ [0, 1]. 

Definition.2.2. The support of a fuzzy set Ã is the 

crisp set such that it is represented as  

        Supp Ã(X) =  0)(/ ~ xXx
A

 . 

Definition.2.3. The height of fuzzy set Ã is h(Ã) = 

)(sup ~ x
A

Xx




. ie, the least upper bound of  

)(~ X
A

 . 

Definition.2.4. A fuzzy set Ã is said to be 

normalized iff there exist Xx , such that 

)(~ X
A

 =1. 

i.e, h(Ã) = 1. If Ã is not normal, then it is called 

subnormal. 
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III. TRIANGULAR FUZZY NUMBER 

We define a fuzzy number M on R to be a triangular fuzzy number if its membership function 

]1,0[:)( RxM  is defined by 

 
lm

lx




  ,      for     mxl   

)(xM  
um

ux




 ,      for      uxm    

    0       ,         otherwise 

where uml  , l  and u  stand for the lower and upper value of the support of M respectively and m  for 

the modal value. The triangular fuzzy number can be denoted by ),,( uml . The support of M is the set of 

elements  uxlRx / , when uml  , it is a non-fuzzy number by convention. Here the vertical 

line shows the membership function.  

                                          

IV. FUZZY RETRIAL QUEUES 

 In this model, the fuzzy arrival rate 
~

, 

fuzzy retrial rate ~ and fuzzy service rate ~  can 

be represented as convex fuzzy sets. Let ),
~

(~ 


 

),~(~  )
~

(~ 


 be the membership functions of 

 ~,
~

and
~

 respectively. The fuzzy sets for the 

above rates are defined by  

             

 )~
(/))(,(

~
~ 


Sxxx   

 

 )~(/))(,(~
~   Syyy    

                                          

 )~
(/))(,(

~
~ 


Szzz   

where  X = )
~

(S , Y = )~(S  and Z = )
~

(S  are 

the supports of 
~

, ~ and 
~

which are the crisp 

universal sets of arrival rate, retrial rate and service 

rate respectively. Clearly when  ~,
~

and
~

 

are fuzzy numbers then the performance measure 

)
~

,~,
~

(~ p are also fuzzy as well. On the basis of 

Zadeh’s extension principle (6,7) the membership 

function of the performance  measure is defined as 

)(
)

~
,~,

~
(~ z

p 
  = 

ZzYyXx  ,,

sup min

 ),,(/))(),(),(( ~~~ zyxpzzyx 


  

            Assume that the system characteristic of 

interest is the expected waiting time W
~

=E(W) and 

expected number of customers L
~

= E(N) in the 

system. From the classical queueing theory, if 

1



, then it becomes steady-state condition 

under which, the expected number of customers in 

the orbit is defined to be  







 





1

2

oN                      ………(4.1) 

and the expected waiting time in the orbit is 

defined by     
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





 



oW                       ………..(4.2) 

The expected waiting time in the system is defined 

to be 

W  =E(W) = 


1
oW  

= 






 1






 ,           

where 



   

Therefore  W  =E(W) = 






 









 





1
 

Using Little’s formula, 

E(N) =  WL   






 









 






 

In FM/FM/1/1-R (Fuzzy retrial queue), the 

expected waiting time and the expected number of 

customers in the system respectively given by 

   W
~

= 











 









 




~

~~

~~
1

                 ………(4.3) 

and              

L
~

= 











 














 






~

~~

~~

~

                 ………..(4.4) 

 

V. THE SOLUTION PROCEDURE 

 One approach to construct the membership function of )(
)

~
,~,

~
(~ z

p 
 is on the 

 basis of deriving α-cuts of  ~,
~

and 
~

. Denote α-cuts of  ~,
~

and 
~

 as 

                         
 


)(/max,)(/min,

~
~~ xxxxxx

XxXx

UL
  ……………………(5.1) 

                           


)(/max,)(/min,~
~~ yyyyyy

YyYy

UL
  …………………...(5.2) 

                         
 


)(/max,)(/min,

~
~~ zzzzzz

ZzZz

UL
  …………………....(5.3) 

These intervals indicate where the group arrival rate, retrial rate and service rate lie at possibility level α. 

Consequently, the fuzzy retrial queues can be reduced to a family of crisp retrial queues with different α-level 

sets   ~,
~

and 
~

, where 0 < α ≤ 1. 

                      By the convexity of a fuzzy number [7], the bands of these intervals are functions of α and can be 

obtained as 

                           
L

x = min )(
1

~ 



       and      

U
x = max )(

1
~ 



 

                          
L

y = min )(
1

~ 


        and      

U
y = max )(

1
~ 


 

                               
L

z = min )(
1

~ 



        and      

U
z = max )(

1
~ 



 

To find the membership function )(~ z
l

 , we have to find the lower bound )(Ll and the upper bound )(Lu of 

α-cuts of )(~ z
l

 . Since the requirement of 


)(~ x can be represented by 
L

xx  or 
U

xx   this can 

be formulated as the constraint of 
UL

xxx   )1( 11  ,where 01  (or) 1.Similarly  )(~ y  can 

be formulated as the constraint 
UL

yyy   )1( 22  ,  

where 02  (or) 1 and 


)(~ z  can be formulated as the constraint 
UL

zzz   )1( 33  ,  

where 03  (or) 1 .The parametric programming problem has the following form 

                                             )(pl = min ),,( zyxp                               

                   such that               
  uxl    

                                              
  uyl   …………………………….(5.4) 

                                              
  uzl    
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and 

                                             )(pu = max ),,( zyxp                               

                   such that               
  uxl    

                                              
  uyl   …………………………….(5.5) 

                                              
  uzl    

 

More over from the definition of (5.1),(5.2) and (5.3), x , y and z respectively replaced by 

),(
UL

xxx  , ),(
UL

yyy  and ),(
UL

zzz  .Consequently, considering all these three cases, the 

membership function )(~ z
l

 can be constructed via finding the lower bound )(Ll  and  the upper bound )(Lu . 

                     If both )(Ll  and )(Lu  are invertible with respect to α, then a left shape function 

  1

)()(


 Ls lzL  and right shape function   1

)()(


 Ls uzR can be obtained. From )(zLs and )(zRs the 

membership function )(~ z
l

 can be constructed as follows 

)(zLs ,            
21 zzz                                                   

 )(
)

~
,~,

~
(

z
p 

    =    )(zRs ,             32 zzz   …………………….(5.6) 

                                                              0   ,   otherwise 

 

where  321 zzz  , 0)()( 31  zRzL . Since the above performance measures are described by 

membership functions, they conserve completely all fuzziness of arrival rate, retrial rate and service rate. 

VI. ILLUSTRATION 

 Consider a centralized parallel processing in which the arrival rate, retrial rate and service rate are 

triangular fuzzy numbers represented by 
~

 = (7, 8, 9), ~ = (2, 3, 4) and 
~

 = (14, 15, 16) per minute 

respectively. The system manager wants to evaluate the performance measures of the system such as expected 

number of customers and waiting time of the customers in the system. 

       The α-cuts of arrival rate 
~

, retrial rate~ and service rate 
~

are respectively given by  

                            
~

 = [7+α , 9-α ] , 
~

 = [2+α , 4-α ] and 
~

 = [14+α , 16-α ]. 

From equations (5.4) and (5.5), the parametric programming problem are formulated to derive the membership 

functions of L
~

 , the number of customers and W
~

, the waiting time of the customers in the system. They are 

calculated as follows using (5.4) and (5.5), but they differ only in their objective functions. 

                   (i).         )(Ll  min
























 














 






~

~~

~~

~

 

                       such that               













16
~

14

4~2

9
~

7

 ……………………………(6.1) 

 

  

 )(Lu  max
























 














 






~

~~

~~

~

 

                       such that               













16
~

14

4~2

9
~

7

 ……………………………(6.2) 
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where 0 < α ≤ 1.  

)(Ll  is found when 
~

and 
~

in the first bracket and 
~

and ~ in the second bracket of the objective function 

approach their lower bounds and upper bounds of the α-cuts respectively. Consequently the optimal solution  for 

(6.1) is  

                                       )(Ll  




728

291 2




                ……………………………………(6.3) 

Also )(Lu  is found when 
~

and 
~

in the first bracket and 
~

and ~ in the second bracket of the objective 

function approach their upper bounds and lower bounds of the α-cuts respectively. Then the optimal solution for 

(6.2) is  

                                  )(Lu  




714

2981 2




                ……………………………………(6.4) 

The membership function )(~ z
l

 is obtained as 

 

                                         )(zL ,                    
1)(0)( 


 LL lzl  

           )(~ z
l

   =             )(zR  ,                    
0)(1)( 


 LL uzu   

                                           0                              otherwise 

 

which is estimated as 

                               
4

)72923849()17( 2

1

2  zzz
 ,         1905.425.3  z      

  )(~ z
L

  =         
4

)72923849()97( 2

1

2  zzz

  ,        

7857.51905.4  z ……………..(6.5)  

                                                     0                                             otherwise  

Similarly, the performance functions of W
~

, the waiting time of the customers in the system can be derived from 

the respective parametric programs which differ only in their  objective function. 

               (ii).      )(Wl  min
























 









 




~

~~

~~
1

                ………………………………..(6.6) 

                                                      and 

                          )(Wu  max
























 









 




~

~~

~~
1

                ………………………………(6.7) 

yield the  following results                            

                  )(Wl  




728

213




            ;    )(Wu   





714

29




     ………………………………(6.8) 

with their membership function as 

                    

                              
)27(

)1328(





z

z
 ,         5238.04643.0  z      

  )(~ z
W

  =            
)27(

)914(





z

z

           

6429.05238.0  z               ………………………...(6.9)  

                                     0                            otherwise  

 

Table I. refers to α-cuts of arrival rate, retrial rate and service rate, lower and upper bounds of them. Fig: (1) and 

Fig: (2) represent the graphs of the membership functions of the expected number of customers and waiting time 

of the customers in the system. 
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TABLE I 
Α-CUTS OF ARRIVAL RATE, RETRIAL RATE, SERVICE RATE FOR FUZZY RETRIAL QUEUE (15- Α-CUTS) 

α 
)(

~


l  
)(

~


u  )(~ l  )(~ u  )(~ l  )(~ u  
)

~
(WE

l  
)

~
(WE

u  
)

~
(NE

l  
)

~
( NE

u  

0 7.0 9 2.0 4.0 14.0 16.0 0.3125 0.7347 2.1875 6.6122 

0.05 7.05 8.95 2.05 3.95 14.05 15.95 0.3181 0.7147 2.2427 6.3965 

0.1 7.1 8.9 2.1 3.9 14.1 15.9 0.3239 0.6956 2.2994 6.1910 

0.2 7.2 8.8 2.2 3.8 14.2 15.8 0.3358 0.6600 2.4176 5.8076 

0.25 7.25 8.75 2.25 3.75 14.25 15.75 0.3420 0.6433 2.4791 5.6287 

0.3 7.3 8.7 2.3 3.7 14.3 15.7 0.3483 0.6273 2.5424 5.4574 

0.4 7.4 8.6 2.4 3.6 14.4 15.6 0.3614 0.5972 2.6745 5.1361 

0.5 7.5 8.5 2.5 3.5 14.5 15.5 0.3753 0.5695 2.8144 4.8404 

0.55 7.55 8.45 2.55 3.45 14.55 15.45 0.3824 0.5564 2.8874 4.7012 

0.6 7.6 8.4 2.6 3.4 14.6 15.4 0.3898 0.5437 2.9627 4.5673 

0.7 7.7 8.3 2.7 3.3 14.7 15.3 0.4052 0.5198 3.1203 4.3145 

0.75 7.75 8.25 2.75 3.25 14.75 15.25 0.4133 0.5085 3.2028 4.1949 

0.8 7.8 8.2 2.8 3.2 14.8 15.2 0.4215 0.4975 3.2879 4.0796 

0.9 7.9 8.1 2.9 3.1 14.9 15.1 0.4388 0.4767 3.4665 3.8611 

1.0 8.0 8.0 3.0 3.0 15.0 15.0 0.4571 0.4571 3.6571 3.6571 

 

                         

Fig. 1 Expected Number of Customers in the System 

                      

Fig. 2 Average Waiting Time of The Customers in the Orbit 
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VII. CONCLUSION 

 In this paper, we have studied system 

characteristic of retrial queueing system under 

fuzzy environment. The fuzzy triangular number is 

being used to derive the system characteristic of 

fuzzy retrial queue model. The waiting time as well 

as expected number of customers in the system has 

been computed by using non-linear parametric 

programming approach. The proposed model is 

more realistic and more suitable for designer and 

practitioners. α-cut approach and parametric 

programming are used to construct system 

characteristic membership function for preserving 

the fuzziness. 
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