
Mrs. Anita Gutta et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED 1

Information Retrieval from Ontology through Jena
Mrs. Anita Gutta, Dr. Priti Srinivas Sajja

Department of Computer Science & Technology

Sardar Patel University

Vallabh Vidyanagar, Gujarat, India

Abstract— Semantic Web is driving the evolution of the current

web by enabling users to find, share and combine information

more easily. Ontology is an important representation model for

the semantic web. This paper talks about information extraction

with the help of semantic technologies. Protégé is the tool used to

build ontology model. The content is stored in Ontologies and

this paper shows how Jena API can be used to extract the data.

Keywords— Ontology Model, Jena, Protégé, Semantic Web.

I. INTRODUCTION

When Tim Berners-Lee invented the World-Wide Web, its

aim was to facilitate communication. The initial goal was to

get the information bridge between humans but now there is

also a need to allow the participation of machines. He first

coined the term „Semantic Web‟ in a paper written in 2001.

He stated: “A major obstacle to this goal is the fact that most

information on the Web is designed solely for human

consumption. Computers are better at handling carefully

structured and well-designed data, yet even where information

is derived from a database with well-defined meanings, the

implications of those data are not evident to a robot browsing

the web.” [1]. Semantic Web can be thought of as an effective

way of representing data in the World Wide Web world, or to

regard it as a database, able to be understood by the machine

some way, linked to the global Web document[2].

The Semantic web relies heavily on formal structure of data

and Ontologies play a key role. Ontology consists of

statements that define concepts, relationships, and constraints.

It is analogous to a database schema or an object-oriented

class diagram. Ontology forms an information domain model.

The ontology in the application is developed using a free open

source editor called Protégé [3]. Protégé is based on Java, is

extensible by means of plugins, and provides a foundation for

customized knowledge-based applications systems.

Jena [4] is a Semantic Web framework developed by Brian

Bride at the HP Semantic Web Laboratory. Jena provides a

programming environment and a basic RDF parser for RDF,

RDF-S, and OWL, and contains an internal reasoning engine

based on rules. Jena‟s SPARQL will be used to query OWL.

Jena has been used in the development of wide range of

applications [5]-[7] and Jeremy J. Carroll [8] gives detailed

workings on how the framework is laid out and how to write

the queries.

The rest of the paper is organized as follows: Section 2

briefs about the application being developed, Section 3

establishes Soil Testing ontology model with protégé. Section

4 goes over Jena queries.

II. APPLICATION

The Jena application covered in this paper is a tool to help

farmers search for Soil Testing Locations. Soil Testing is an

important first step in getting successful crop yields. Farmers

don‟t have the knowledge that they have to get the soil testing

done and based on the results have to select the right seeds

and manure. Through this application they can search for

testing locations nearby so they can get testing done in a

timely manner. The model was developed using protégé and

stored as an owl document. It can be stored in any database

but for this application it is left as an owl document and data

is directly accessed from it. This presents another way how

data can be accessed from ontology‟s without the need of the

databases. This also has the added advantage of being easily

portable and any new outside Ontologies can be easily

integrated into the application.

III. MODEL

The first step before building the ontology model in protégé

is to layout the classes and properties that satisfy the model.

For Soil Testing (ST) application, below are the classes and

their properties.

Class State

Property Name

Class Location

Properties Name

 Address

 Phone

part of City (Class)

TestingType (Array) TestingTypes (Class)

Class Testing Types

Properties Name

 Description

Class City

Property Name

SubOrganizationOf State (Class)

Mrs. Anita Gutta et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED 2

Once this is established the next step is to build the classes

and their properties in protégé.

Fig. 1 Classes in Protégé

Now instances for each of these classes can be created as

needed.

Fig. 2 Instances of classes in Protégé

When the entire model is built is protégé it can be saved as

an owl document. The contents of the file will look like this.

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="SoilTestingLocations_0.owl">

 <owl:Ontology rdf:about="SoilTestingLocations_0.owl">

 <owl:imports rdf:resource="SoilTestingLocations_0.owl"/>

 </owl:Ontology>

 <ub:State rdf:about="http://www.owl-ontologies.com/State1">

 <ub:name>AndhraPradesh</ub:name>

 </ub:State>

 <ub:City rdf:about="http://www.owl-ontologies.com/City1">

 <ub:name>Vizag</ub:name>

 <ub:subOrganizationOf rdf:resource="http://www.owl-

ontologies.com/State1"/>

 </ub:City>

 <ub:TestingTypes rdf:about="http://www.owl-

ontologies.com/Type1">

 <ub:name>Grid Sampling</ub:name>

 <ub:description>Does a Grid Sampling soil

testing.</ub:description>

 </ub:TestingTypes>

 <ub:Location rdf:about="http://www.owl-

ontologies.com/Location1">

 <ub:partOf rdf:resource="http://www.owl-

ontologies.com/City1"/>

 <ub:address>Daspalla Hills, Visakhapatnam, Andhra Pradesh

530003, India</ub:address>

 <ub:name>J J Associates</ub:name>

 <ub:phone>91 891 275 5203</ub:phone>

 <ub:testingType rdf:resource="http://www.owl-

ontologies.com/Type0"/>

 <ub:testingType rdf:resource="http://www.owl-

ontologies.com/Type1"/>

 </ub:Location>

Mrs. Anita Gutta et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED 3

Fig 4: This is how it looks in Jambalaya tab in protégé

IV. RUNNING QUERIES

The application is based on Java and the front end is

written in JSP‟s. Front end components will not be discussed

here as they are beyond the scope of the paper. All Jena

Queries are written in SPARQL language [9]. The following

queries will be explained in detailed.

Q1: Gets all the states

Q2: Gets all the cities for a given state

Q3: Gets all the locations for a given city

A. Q1 – Gets all the states

The first query is very simple it does not take any input

parameters. It does a retrieve on the all STATE instances and

gets its name. The results are ordered alphabetically by

stateName.

Query SELECT ?name where { ?X rdf:type ub:State .

?X ub:name ?name} order by ?name

Results [(?name = "AndhraPradesh"), (?name =

"ArunachalPradesh"), (?name = "Assam"), (

?name = "Bihar"), (?name = "Chhattisgarh"),

(?name = "Goa"), ….. (?name =

"Uttarakhand"), (?name = "WestBengal")]

On the application page this is how the results are displayed.

Fig 5: State‟s displayed on the screen

Mrs. Anita Gutta et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED 4

B. Q2: Gets all the cities for a given state

Query SELECT ?name where { ?X rdf:type ub:City .

?X ub:name ?name . ?X ub:subOrganizationOf

?Y . ?Y ub:name ?stateName . FILTER

(regex(?stateName, ?inputState, \"i\"))} order

by ?name

In the second query we are getting all the city names when

a state is selected. The first part of the query returns all the

city instances. A particular city instance is associated with a

state instance. So from this state name is inferred and it is

matched with the help of regular expression with the input

state name. Jena allows search parameters to be sent to queries

at run time. So once the state is selected the search parameter

is sent to the query. The following commands binds the state

search parameter to the query variable “i” defined in the query.

RDFNode stateNode = m.createLiteral(inputState);

initialBindings.add("inputState", stateNode);

Results [(?name = "Guntur"), (?name = "Hyderabad"

), (?name = "Nellore"), (?name =

"Vijayawada"), (?name = "Vizag"), (?name

= "Warangal")]

The results are displayed as a drop down just like states.

Fig 6: Cities displayed on the screen

C. Q3: Gets all the locations for a given city

Query SELECT ?X ?name ?address ?phone ?testingName

where { ?X rdf:type ub:Location . ?X ub:address

?address . ?X ub:name ?name . ?X ub:phone ?phone .

?X ub:testingType ?Z . ?Z ub:name ?testingName .

?X ub:partOf ?Y . ?Y ub:name ?cityName . FILTER

(regex(?cityName, ?inputCity, \"i\"))}

In the owl document a location node has the address,

reference to the city and testing types offered at this location.

First all the locations nodes are pulled and then the city name

is matched to the city the user selected. Regular expressions

are used to do this kind of filtering. And also Jena provides

with the capability to bind variables at run time. The above

query returns the results as follows.

Results [(?X = <http://www.owl-ontologies.com/Location9>)

(?address = "34532234 SPTL Colony, Anand") (

?name = "Santosh Soil Integration Services") (

?phone = "91 891 250 6210") (?testingName =

"Conventional"), (?X = <http://www.owl-

ontologies.com/Location10>) (?address = "34532234

gachibowli, hyderabad") (?name = "Mahalakshmi

Soil Integration Services") (?phone = "91 891 250

6210") (?testingName = "Grid Sampling"), (?X =

<http://www.owl-ontologies.com/Location10>) (

?address = "34532234 gachibowli, hyderabad") (

?name = "Mahalakshmi Soil Integration Services") (

?phone = "91 891 250 6210") (?testingName =

"Conventional")]

Jena API is used to extract the needed fields from the

output. This data is sent to JSP page and are displayed

according to user needs.

Fig 6: Locations displayed on the screen

Mrs. Anita Gutta et al. / Journal of Computing Technologies ISSN 2278 – 3814

© 2012 JCT JOURNALS. ALL RIGHTS RESERVED 5

V. CONCLUSIONS

There is a lot of research going on Semantic Web

Technologies and Ontologies play a key role in them. We

have taken a very small piece of it and shown how ontology

owl documents can be used to build a real time application.

We have left the ontology as an owl document instead of

loading into database so that it is easily portable to other

systems. And also it makes the application easy to add a new

ontology in future.

The application presented in this paper uses only one

ontology but multiple Ontologies can be used with the Jena

Analyser. More complex applications can be developed with

multiple JSP Pages and servlets to handle different requests.

Each Jena Analyser can call one or more Ontologies to satisfy

the requests. Also future work includes adding more

complexity to the model to make it more versatile and

comprehensive.

Fig 7: Design of a system with multiple Ontologies

REFERENCES

1. Berners-Lee, Tim. Semantic Web Road Map. W3C Design issues.

[Online] 1998. http://www.w3.org/designissues/semantic.html.

2. Balani, N. The Future of the Web Is Semantic. [Online] 2005.

http://www.ibm.com/developerworks/cn/java/wa-semweb .

3. The Protege Ontology Editor and Knowledge Base Acquisition

System. [Online] http://protege.stanford.edu/.

4. Jena—A Semantic Web Framework for Java. [Online]

http://jena.sourceforge.net/.

5. A Study on the Improvement of Query Proc- essing Performance of

OWL Data Based on Jena2. Heo, S.-Y. International Conference on

Convergence and Hybrid In-formation Technology, Cheonan : s.n.,

2008.

6. Reasoning and Realization Based on Ontology Model and Jena.

Duan, W. Zhang and L. G. Fifth International Conference on

Theories and Applications (BIC-TA), Taiyuan : IEEE, 2010.

7. The Research on the Jena- Based Web Page Ontology Extracting

and Processing. Ding, M. Wang and J. P. Shanghai : s.n., 2005, Vols.

First International Conference on Semantics, Knowledge and Grid.

8. Jena: Implementing the Semantic Web Recommendations.

Reynolds, J. J. Carroll and D. New York : s.n., 2004, Vol.

Proceedings of the 13th International World Wide Web Conference

on Alternate Track Papers & Posters.

9. Eric Prud'hommeaux, Andy Seaborne. SPARQL Query Language

for RDF. [Online] 2006. http://www.w3.org/TR/2006/CR-rdf-sparql-

query-20060406/.

Jena
Analyser 3

……

……

….

Owl Owl Owl Owl

Jena
Analyser 2

Jena
Analyser 1

Servlet 3 Servlet 2 Servlet 1

Router Servlet

 JSP Page

http://www.w3.org/designissues/semantic.html
http://protege.stanford.edu/
http://jena.sourceforge.net/

